Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L. Fundamental dimensions of environmental risk—The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Hum. Nat. 20, 204–268. https://doi.org/10.1007/s12110-009-9063-7 (2009).
Google Scholar
Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359. https://doi.org/10.1038/346357a0 (1990).
Google Scholar
Pianka, E. R. On r- and K-selection. Am. Nat. 104, 592–597. https://doi.org/10.1086/282697 (1970).
Google Scholar
Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47. https://doi.org/10.1086/409052 (1976).
Google Scholar
Flegr, J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188, 121–126. https://doi.org/10.1006/jtbi.1997.0458 (1997).
Google Scholar
Bowyer, R. T., Person, D. K. & Pierce, B. M. Detecting top-down versus bottom-up regulation of ungulates by large carnivores: Implications for conservation of biodiversity. In Large Carnivores and the Conservation of Biodiversity (eds. Ray, J. C et al.) 342–361 (Island Press, 2005).
Jones, M. E. et al. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 105, 10023–10027. https://doi.org/10.1073/pnas.0711236105 (2008).
Google Scholar
Scheele, B. C. et al. Disease-associated change in an amphibian life-history trait. Oecologia 184, 825–833. https://doi.org/10.1007/s00442-017-3911-7 (2017).
Google Scholar
Thornhill, J. A., Jones, J. T. & Kusel, J. R. Increased oviposition and growth in immature Biomphalaria glabrata after exposure to Schistosoma mansoni. Parasitology 93, 443–450. https://doi.org/10.1017/S0031182000081166 (1986).
Google Scholar
Polak, M. & Starmer, W. T. Parasite-induced risk of mortality elevates reproductive effort in male Drosophila. Proc. R. Soc. B 265, 2197–2201. https://doi.org/10.1098/rspb.1998.0559 (1998).
Google Scholar
Chadwick, W. & Little, T. J. A parasite-mediated life-history shift in Daphnia magna. Proc. R. Soc. B 272, 505–509. https://doi.org/10.1098/rspb.2004.2959 (2005).
Google Scholar
Schwanz, L. E. Chronic parasitic infection alters reproductive output in deer mice. Behav. Ecol. Sociobiol. 62, 1351–1358. https://doi.org/10.1007/s00265-008-0563-y (2008).
Google Scholar
Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).
Google Scholar
Hill, K. Life history theory and evolutionary anthropology. Evol. Anthropol. 2, 78–88. https://doi.org/10.1002/evan.1360020303 (1993).
Google Scholar
Charlesworth, B. Evolution in Age-Structured Populations 2nd edn. (Cambridge University Press, 1994).
Google Scholar
Nettle, D. & Frankenhuis, W. E. Life-history theory in psychology and evolutionary biology: One research programme or two?. Philos. Trans. R. Soc. B 375, 9. https://doi.org/10.1098/rstb.2019.0490 (2020).
Google Scholar
Del Giudice, M. Rethinking the fast-slow continuum of individual differences. Evol. Hum. Behav. 41, 536–549. https://doi.org/10.1016/j.evolhumbehav.2020.05.004 (2020).
Google Scholar
Lammers, C., Ireland, M., Resnick, M. & Blum, R. Influences on adolescents’ decision to postpone onset of sexual intercourse: A survival analysis of virginity among youths aged 13 to 18 years. J. Adolesc. Health 26, 42–48. https://doi.org/10.1016/s1054-139x(99)00041-5 (2000).
Google Scholar
Wilson, M. & Daly, M. Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ 314, 1271–1274 (1997).
Google Scholar
Bereczkei, T. & Csanaky, A. Stressful family environment, mortality, and child socialisation: Life-history strategies among adolescents and adults from unfavourable social circumstances. Int. J. Behav. Dev. 25, 501–508. https://doi.org/10.1080/01650250042000573 (2001).
Google Scholar
Nettle, D. Dying young and living fast: Variation in life history across English neighborhoods. Behav. Ecol. 21, 387–395. https://doi.org/10.1093/beheco/arp202 (2010).
Google Scholar
Griskevicius, V., Delton, A. W., Robertson, T. E. & Tybur, J. M. Environmental contingency in life history strategies: The influence of mortality and socioeconomic status on reproductive timing. J. Pers. Soc. Psychol. 100, 241–254. https://doi.org/10.1037/a0021082 (2011).
Google Scholar
Sheppard, P., Pearce, M. S. & Sear, R. How does childhood socioeconomic hardship affect reproductive strategy? Pathways of development. Am. J. Hum. Biol. 28, 356–363. https://doi.org/10.1002/ajhb.22793 (2016).
Google Scholar
Belsky, J., Steinberg, L. & Draper, P. Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Dev. 62, 647–670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.x (1991).
Google Scholar
Rickard, I. J., Frankenhuis, W. E. & Nettle, D. Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspect. Psychol. Sci. 9, 3–15. https://doi.org/10.1177/1745691613513467 (2014).
Google Scholar
Chua, K. J., Lukaszewski, A. W., Grant, D. M. & Sng, O. Human life history strategies: Calibrated to external or internal cues?. Evol. Psychol. 15, 1474704916677342. https://doi.org/10.1177/1474704916677342 (2017).
Google Scholar
Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57, 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).
Google Scholar
Giehr, J., Grasse, A. V., Cremer, S., Heinze, J. & Schrempf, A. Ant queens increase their reproductive efforts after pathogen infection. R. Soc. Open Sci. 4, 170547. https://doi.org/10.1098/rsos.170547 (2017).
Google Scholar
Sorci, G., Clobert, J. & Michalakis, Y. Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76, 121–130. https://doi.org/10.2307/3545754 (1996).
Google Scholar
Oppliger, A., Christe, P. & Richner, H. Clutch size and malarial parasites in female great tits. Behav. Ecol. 8, 148–152. https://doi.org/10.1093/beheco/8.2.148 (1997).
Google Scholar
Sanz, J. J., Arriero, E., Moreno, J. & Merino, S. Interactions between hemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126, 339–344. https://doi.org/10.1007/s004420000530 (2001).
Google Scholar
Westendorp, R. G. J. & Kirkwood, T. B. L. Human longevity at the cost of reproductive success. Nature 396, 743–746. https://doi.org/10.1038/25519 (1998).
Google Scholar
Thomas, F., Teriokhin, A. T., Renaud, F., De Meeus, T. & Guégan, J. F. Human longevity at the cost of reproductive success: Evidence from global data. J. Evol. Biol. 13, 409–414. https://doi.org/10.1046/j.1420-9101.2000.00190.x (2000).
Google Scholar
Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The heritability of life history strategy: The K-factor, covitality, and personality. Soc. Biol. 51, 121–143 (2004).
Google Scholar
Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The K-factor, covitality, and personality—A psychometric test of life history theory. Hum. Nat. 18, 47–73. https://doi.org/10.1007/bf02820846 (2007).
Google Scholar
Hill, S. E., Boehm, G. W. & Prokosch, M. L. Vulnerability to disease as a predictor of faster life history strategies. Adapt. Hum. Behav. Physiol. 2, 116–133. https://doi.org/10.1007/s40750-015-0040-6 (2016).
Google Scholar
Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165. https://doi.org/10.1093/beheco/arv133 (2016).
Google Scholar
Waynforth, D. Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proc. R. Soc. B 279, 2998–3002. https://doi.org/10.1098/rspb.2012.0220 (2012).
Google Scholar
Mace, R. Evolutionary ecology of human life history. Anim. Behav. 59, 1–10. https://doi.org/10.1006/anbe.1999.1287 (2000).
Google Scholar
Low, B. S., Simon, C. P. & Anderson, K. G. An evolutionary ecological perspective on demographic transitions: Modeling multiple currencies. Am. J. Hum. Biol. 14, 149–167. https://doi.org/10.1002/ajhb.10043 (2002).
Google Scholar
Galor, O. The demographic transition: Causes and consequences. Cliometrica 6, 1–28. https://doi.org/10.1007/s11698-011-0062-7 (2012).
Google Scholar
Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human body temperature in the United States since the industrial revolution. Elife 9, e49555. https://doi.org/10.7554/eLife.49555 (2020).
Google Scholar
Novotná, M. et al. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology 135, 1253–1261. https://doi.org/10.1017/s003118200800485x (2008).
Google Scholar
Flegr, J., Novotná, M., Lindová, J. & Havlíček, J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol. Lett. 29, 475–481 (2008).
Google Scholar
Flegr, J., Preiss, M. & Klose, J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS One 8, e61272. https://doi.org/10.1371/journal.pone.0061272 (2013).
Google Scholar
Flegr, J., Šebánková, B., Příplatová, L., Chvátalová, V. & Kaňková, Š. Lower performance of Toxoplasma-infected, Rh-negative subjects in the weight holding and hand-grip tests. PLoS One 13, e0200346. https://doi.org/10.1371/journal.pone.0200346 (2018).
Google Scholar
Flegr, J., Klose, J., Novotná, M., Berenreitterová, M. & Havlíček, J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect. Dis. https://doi.org/10.1186/1471-2334-9-72 (2009).
Google Scholar
Flegr, J., Geryk, J., Volný, J., Klose, J. & Černochová, D. Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS One 7, e4947810. https://doi.org/10.1371/journal.pone.0049478 (2012).
Google Scholar
Flegr, J., Hoffmann, R. & Dammann, M. Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS One 10, e0141362. https://doi.org/10.1371/journal.pone.0141362 (2015).
Google Scholar
Flegr, J. Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS One 11, e0147955. https://doi.org/10.1371/journal.pone.0147955 (2016).
Google Scholar
Flegr, J., Kuba, R. & Kopecký, R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS One 15, e0236134. https://doi.org/10.1371/journal.pone.0236134 (2020).
Google Scholar
Kaňková, Š., Flegr, J., Toman, J. & Calda, P. Maternal RhD heterozygous genotype is associated with male biased secondary sex ratio. Early Hum. Dev. 140, 104864. https://doi.org/10.1016/j.earlhumdev.2019.104864 (2020).
Google Scholar
Flegr, J. & Dama, M. Does the prevalence of latent toxoplasmosis and frequency of Rhesus-negative subjects correlate with the nationwide rate of traffic accidents?. Folia Parasitol. 61, 485–494 (2014).
Google Scholar
Halmin, M. et al. Length of storage of red blood cells and patient survival after blood transfusion: A binational cohort study. Ann. Intern. Med. 166, 248–256. https://doi.org/10.7326/m16-1415 (2017).
Google Scholar
Jacobsen, B. K., Oda, K., Knutsen, S. F. & Fraser, G. E. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: The Adventist Health Study, 1976–88. Int. J. Epidemiol. 38, 245–252. https://doi.org/10.1093/ije/dyn251 (2009).
Google Scholar
Lakshman, R. et al. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 94, 4953–4960. https://doi.org/10.1210/jc.2009-1789 (2009).
Google Scholar
Canoy, D. et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 131, 237–244. https://doi.org/10.1161/circulationaha.114.010070 (2015).
Google Scholar
Macsali, F. et al. Early age at menarche, lung function, and adult asthma. Am. J. Respir. Crit. Care Med. 183, 8–14. https://doi.org/10.1164/rccm.200912-1886OC (2011).
Google Scholar
Stöckl, D. et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: The KORA F4 Study. Diabetologia 55, 681–688. https://doi.org/10.1007/s00125-011-2410-3 (2012).
Google Scholar
Brinton, L. A., Schairer, C., Hoover, R. N. & Fraumeni, J. F. Menstrual factors and risk of breast cancer. Cancer Investig. 6, 245–254. https://doi.org/10.3109/07357908809080645 (1988).
Google Scholar
Kvale, G. & Heuch, I. Menstrual factors and breast cancer risk. Cancer 62, 1625–1631. https://doi.org/10.1002/1097-0142(19881015)62:8%3c1625::aid-cncr2820620828%3e3.0.co;2-k (1988).
Google Scholar
Adair, L. S. Size at birth predicts age at menarche. Pediatrics 107, e59. https://doi.org/10.1542/peds.107.4.e59 (2001).
Google Scholar
Romundstad, P. R. et al. Birth size in relation to age at menarche and adolescent body size: Implications for breast cancer risk. Int. J. Cancer 105, 400–403. https://doi.org/10.1002/ijc.11103 (2003).
Google Scholar
Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E. & Hickey, M. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab. 92, 46–50. https://doi.org/10.1210/jc.2006-1378 (2007).
Google Scholar
Rich-Edwards, J. W. et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400. https://doi.org/10.1136/bmj.315.7105.396 (1997).
Google Scholar
Andersen, A. M. N. & Osler, M. Birth dimensions, parental mortality, and mortality in early adult age: A cohort study of Danish men born in 1953. Int. J. Epidemiol. 33, 92–99. https://doi.org/10.1093/ije/dyg195 (2004).
Google Scholar
Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12. https://doi.org/10.1016/j.tem.2005.11.006 (2006).
Google Scholar
Kulin, H. E., Bwibo, N., Mutie, D. & Santner, S. J. The effect of chronic childhood malnutrition on pubertal growth and development. Am. J. Clin. Nutr. 36, 527–536. https://doi.org/10.1093/ajcn/36.3.527 (1982).
Google Scholar
Khan, A. D., Schroeder, D. G., Martorell, R., Haas, J. D. & Rivera, J. Early childhood determinants of age at menarche in rural Guatemala. Am. J. Hum. Biol. 8, 717–723. https://doi.org/10.1002/(sici)1520-6300(1996)8:6%3c717::aid-ajhb3%3e3.0.co;2-q (1996).
Google Scholar
Leenstra, T. et al. Prevalence and severity of malnutrition and age at menarche; cross-sectional studies in adolescent schoolgirls in western Kenya. Eur. J. Clin. Nutr. 59, 41–48. https://doi.org/10.1038/sj.ejcn.1602031 (2005).
Google Scholar
Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311. https://doi.org/10.1002/ajhb.20510 (2006).
Google Scholar
Idler, E. L. & Kasl, S. V. Self-ratings of health: Do they also predict change in functional ability. J. Gerontol. B 50, S344–S353. https://doi.org/10.1093/geronb/50B.6.S344 (1995).
Google Scholar
O’Sullivan, L. F. & Byers, E. S. College students’ incorporation of initiator and restrictor roles in sexual dating interactions. J. Sex Res. 29, 435–446. https://doi.org/10.1080/00224499209551658 (1992).
Google Scholar
Smith, C. A. Factors associated with early sexual activity among urban adolescents. Soc. Work 42, 334–346. https://doi.org/10.1093/sw/42.4.334 (1997).
Google Scholar
Mercer, C. H. et al. Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 382, 1781–1794. https://doi.org/10.1016/s0140-6736(13)62035-8 (2013).
Google Scholar
Kalick, S. M., Zebrowitz, L. A., Langlois, J. H. & Johnson, R. M. Does human facial attractiveness honestly advertise health? Longitudinal data on an evolutionary question. Psychol. Sci. 9, 8–13. https://doi.org/10.1111/1467-9280.00002 (1998).
Google Scholar
Jones, B. C. et al. Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness-symmetry relationship. Evol. Hum. Behav. 22, 417–429. https://doi.org/10.1016/s1090-5138(01)00083-6 (2001).
Google Scholar
Woodley of Menie, M. A. et al. Slow and steady wins the race: K positively predicts fertility in the USA and Sweden. Evol. Psychol. Sci. 3, 109–117. https://doi.org/10.1007/s40806-016-0077-1 (2017).
Kington, R., Lillard, L. & Rogowski, J. Reproductive history, socioeconomic status, and self-reported health status of women aged 50 years or older. Am. J. Public Health 87, 33–37. https://doi.org/10.2105/ajph.87.1.33 (1997).
Google Scholar
Doblhammer, G. & Oeppen, J. Reproduction and longevity among the British peerage: The effect of frailty and health selection. Proc. R. Soc. B 270, 1541–1547. https://doi.org/10.1098/rspb.2003.2400 (2003).
Google Scholar
Lawlor, D. A. et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British women’s heart and health study and the British regional heart study. Circulation 107, 1260–1264. https://doi.org/10.1161/01.cir.0000053441.43495.1a (2003).
Google Scholar
Parikh, N. I. et al. Parity and risk of later-life maternal cardiovascular disease. Am. Heart J. 159, 215–221. https://doi.org/10.1016/j.ahj.2009.11.017 (2010).
Google Scholar
Ryan, C. P. et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8, 11100. https://doi.org/10.1038/s41598-018-29486-4 (2018).
Google Scholar
Kaňková, Š., Šulc, J. & Flegr, J. Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology 137, 1773–1779. https://doi.org/10.1017/s0031182010000661 (2010).
Google Scholar
Case, A., Fertig, A. & Paxson, C. The lasting impact of childhood health and circumstance. J. Health Econ. 24, 365–389. https://doi.org/10.1016/j.jhealeco.2004.09.008 (2005).
Google Scholar
Kuh, D. J. L. & Wadsworth, M. E. J. Physical health-status at 36 years in a British national birth cohort. Soc. Sci. Med. 37, 905–916. https://doi.org/10.1016/0277-9536(93)90145-t (1993).
Google Scholar
Eide, E. R. & Showalter, M. H. Estimating the relation between health and education: What do we know and what do we need to know?. Econ. Educ. Rev. 30, 778–791. https://doi.org/10.1016/j.econedurev.2011.03.009 (2011).
Google Scholar
Behrman, J. R. & Rosenzweig, M. R. Returns to birthweight. Rev. Econ. Stat. 86, 586–601. https://doi.org/10.1162/003465304323031139 (2004).
Google Scholar
Black, S. E., Devereux, P. J. & Salvanes, K. G. From the cradle to the labor market? The effect of birth weight on adult outcomes. Q. J. Econ. 122, 409–439. https://doi.org/10.1162/qjec.122.1.409 (2007).
Google Scholar
Almond, D. Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 US population. J. Polit. Econ. 114, 672–712. https://doi.org/10.1086/507154 (2006).
Google Scholar
Almond, D., Edlund, L. & Palme, M. Chernobyl’s subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Q. J. Econ. 124, 1729–1772. https://doi.org/10.1162/qjec.2009.124.4.1729 (2009).
Google Scholar
Nilsson, J. P. The Long-Term Effects of Early Childhood Lead Exposure: Evidence from the Phase-Out of Leaded Gasoline. (Uppsala University and Institute for Labor Market Policy Evaluation (IFAU), 2009).
Bleakley, H. Disease and development: Evidence from hookworm eradication in the American South. Q. J. Econ. 122, 73–117. https://doi.org/10.1162/qjec.121.1.73 (2007).
Google Scholar
Rees, D. I. & Sabia, J. J. The effect of migraine headache on educational attainment. J. Hum. Resour. 46, 317–332 (2011).
Kessler, R. C., Foster, C. L., Saunders, W. B. & Stang, P. E. Social consequences of psychiatric disorders, I. Educational attainment. Am. J. Psychiatry 152, 1026–1032 (1995).
Google Scholar
Miech, R. A., Caspi, A., Moffitt, T. E., Wright, B. R. E. & Silva, P. A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood. Am. J. Sociol. 104, 1096–1131. https://doi.org/10.1086/210137 (1999).
Google Scholar
Flegr, J. & Horáček, J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2019.01012 (2020).
Google Scholar
Kopecký, R., Boschetti, S. & Flegr, J. Effect of being religious on wellbeing in a predominantly atheist country: Explorative study on wellbeing, fitness, physical and mental health. PsyArXiv https://doi.org/10.31234/osf.io/3kr6n (2019).
Flegr, J. & Horáček, J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiatry. 40, 82–87. https://doi.org/10.1016/j.eurpsy.2016.09.001 (2017).
Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Revised edn. (Academic Press, 1977).
Armelagos, G. J., Goodman, A. H. & Jacobs, K. H. The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22. https://doi.org/10.1007/bf01256568 (1991).
Google Scholar
Lallo, J. W., Armelagos, G. J. & Mensforth, R. P. The role of diet, disease, and physiology in the origin of porotic hyperostosis. Hum. Biol. 49, 471–483 (1977).
Google Scholar
Goodman, A. H., Armelagos, G. J. & Rose, J. C. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980).
Google Scholar
Angel, J. L. Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric Eastern Mediterranean. Science 153, 760–763 (1966).
Google Scholar
Eaton, S. B., Eaton, S. B. & Konner, M. J. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur. J. Clin. Nutr. 51, 207–216. https://doi.org/10.1038/sj.ejcn.1600389 (1997).
Google Scholar
Flegr, J. & Kuba, R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol. Psychol. https://doi.org/10.1177/1474704916659746 (2016).
Google Scholar
Penke, L. & Asendorpf, J. B. Beyond global sociosexual orientations: A more differentiated look at sociosexuality and its effects on courtship and romantic relationships. J. Pers. Soc. Psychol. 95, 1113–1135. https://doi.org/10.1037/0022-3514.95.5.1113 (2008).
Google Scholar
Sýkorová, K. & Flegr, J. Dataset to the study ‘Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health’. igshare https://doi.org/10.6084/m9.figshare.12100623.v1 (2020).
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ . Accessed September 2018. (2019).
Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
Google Scholar
Epskamp, S. semPlot: Unified visualizations of structural equation models. Struct. Equ. Model. 22, 474–483. https://doi.org/10.1080/10705511.2014.937847 (2015).
Google Scholar
Source: Ecology - nature.com