in

Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification

  • 1.

    EU. No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 35–55 (2014).

    Google Scholar 

  • 2.

    Ludyanskiy, M. L., McDonald, D. & MacNeill, D. Impact of the Zebra Mussel, a Bivalve Invader. Bioscience 43, 533–544 (1993).

    Article 

    Google Scholar 

  • 3.

    Lalaguna, C. D. & Marco, A. A. The zebra mussel invasion in Spain and navigation rules. Aquat. Invasions 3, 315–324 (2008).

    Article 

    Google Scholar 

  • 4.

    Rajagopal, S. et al. Origin of spanish invasion by the zebra mussel, dreissena polymorpha (pallas, 1771) revealed by amplified fragment length polymorphism (AFLP) fingerprinting. Biol. Invasions 11, 2147–2159 (2009).

    Article 

    Google Scholar 

  • 5.

    CABI Invasive species Compendium: Dreissena polymorpha (zebra mussel) 2017. https://www.cabi.org/isc/datasheet/85295.

  • 6.

    Marescaux, J. & Van Doninck, K. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia). Zookeys 365, 235–244 (2013).

    Article 

    Google Scholar 

  • 7.

    Benson, A. J., Raikow, D., Larson, J., Fusaro, A., & Bogdanoff, A. K. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL (2017).

  • 8.

    Minchin, D., Lucy, F. & Sullivan, M. Zebra Mussel: Impacts and Spread. Invasive Aquat. Species Eur. Distrib. Impacts Manag. 135–146. © 2002 Kluwer Acad. Publ. Dordreicht, Netherlands. 135–148 (2002) doi:https://doi.org/10.1007/978-94-015-9956-6_15.

  • 9.

    Montero Melendez, J. Control of invasive alien species in Guadalquivir river basin. EURO-RIOB 2017. https://www.riob.org/es/node/4045

  • 10.

    Molloy, D. P., Karatayev, A., Burlakova, L. E., Kurandina, D. P. & Laruelle, F. Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Rev. Fish. Sci. 5, 27–97 (1997).

    Article 

    Google Scholar 

  • 11.

    Nalepa, T. F. & Schloesser, D. W. Zebra Mussels Biology, Impacts, and Control (Lewis Publishers, Boca Raton, 1993).

    Google Scholar 

  • 12.

    Birnbaum, C. NOBANIS – Invasive Alien Species Fact Sheet – Dreissena polymorpha. Accessed 2 Dec 2019. https://www.nobanis.org (Online Database of the European Network on Invasive Alien Species – NOBANIS, 2011).

  • 13.

    Lowe, S., Browne, M., Boudjelas, S., De Poorter, M. 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species
    Database
    . (The Invasive Species Specialist Group (ISSG), 2000).

  • 14.

    Glomski, L. M. Zebra Mussel Chemical Control Guide. US Army Corps of Engineers: Waterways Experiment Station. https://erdclibrary.erdc.dren.mil/jspui/bitstream/11681/6966/1/ERDC-EL-TR-15-9.pdf (2015).

  • 15.

    Boelman, S. F., Neilson, F. M., Dardeau, E. A. & Cross, T. Zebra mussel (Dreissena polymorpha) control handbook for facility operators, first edition . US Army Corps of Engineers: Waterways Experiment Station. https://hdl.handle.net/11681/2966 (1997).

  • 16.

    Durán, C., Lanao, M., Anadón, A. & Touyá, V. Management in practice management strategies for the zebra mussel invasion in the Ebro River basin. Aquat. Invasions 5, 309–316 (2010).

    Article 

    Google Scholar 

  • 17.

    Bij de Vaate, A. Rajagopal, S. & van der Velde, G. The zebra mussel in Europe: summary and synthesis. in The Zebra Mussel in Europe (ed van der Velde, G.
    et al.) 415–421 (Backhuys Publishers, 2010).

  • 18.

    Herder, J. et al. Environmental DNA—a review of the possible applications for the detection of (invasive) species. Report 2013-104. Accessed 3 May 2019. https://www.researchgate.net/publication/283267157_Environmental_DNA_-_a_review_of_the_possible_applications_for_the_detection_of_invasive_species#fullTextFileContent (Stichting RAVON, Nijmegen, 2014).

  • 19.

    Xiong, W., Li, H. & Zhan, A. Early detection of invasive species in marine ecosystems using high-throughput sequencing: technical challenges and possible solutions. Mar. Biol. 163, 1–12 (2016).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).

    Article 

    Google Scholar 

  • 21.

    Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. ‘Sight-unseen’ detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).

    Article 

    Google Scholar 

  • 22.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article 

    Google Scholar 

  • 23.

    Jerde, C. L. et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70, 522–526 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Conserv. 183, 29–37 (2015).

    Article 

    Google Scholar 

  • 25.

    Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8, e56584 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Gingera, T. D., Bajno, R., Docker, M. F. & Reist, J. D. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasions 8, 287–300 (2017).

    Article 

    Google Scholar 

  • 27.

    Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Kaprou, G. D. et al. Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics. Microsyst. Technol. 22, 1529–1534 (2016).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62–69 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fang, X., Liu, Y., Kong, J. & Jiang, X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82, 3002–3006 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Rafati, A. & Gill, P. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim. Acta 182, 523–530 (2014).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Mori, Y., Kitao, M., Tomita, N. & Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 59, 145–157 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Garrido-Maestu, A., Fuciños, P., Azinheiro, S., Carvalho, J. & Prado, M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 80, 297–306 (2017).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Verkaar, E., Nijman, I., Boutaga, K. & Lenstra, J. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci. 60, 365–369 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Wilson-Wilde, L., Norman, J. & Robertson, J. et al. Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I
    (COI) gene. Forensic Sci. Med. Pathol. 6, 233–241. https://doi.org/10.1007/s12024-010-9172-y (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & Jeremy, R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270(1512), 313–321 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Staroscik, A. Copy number calculator for realtime PCR. http://www.scienceprimer.com/copy-number-calculator-for-realtime-pcr (2012).

  • 40.

    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Zanoli, L. M. & Spoto, G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3, 18–43 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Egan, S. P. et al. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ. Sci. Technol. 49, 4113–4121 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).

    Article 

    Google Scholar 

  • 44.

    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Frackman, B. S., Kobs, G., Simpson, D., Storts, D. & Corporation, P. Betaine and DMSO: enhancing agents for PCR. Promega Notes 65, 9–12 (1998).

    Google Scholar 

  • 46.

    Wang, D.-G., Brewster, J., Paul, M. & Tomasula, P. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048–6059 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Jantz, B. & Neumann, D. Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia 114, 213–225 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Grigorovich, I. A., Kelly, J. R., Darling, J. A. & West, C. W. The quagga mussel invades the Lake Superior Basin. J. Great Lakes Res. 34, 342–350 (2008).

    Article 

    Google Scholar 

  • 49.

    Mahon, A. R. et al. Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform. PLoS ONE 6, 1–5 (2011).

    Article 
    CAS 

    Google Scholar 

  • 50.

    PrimerExplorer. LAMP Primer Designing Software (Fujitsu Ltd, Tokyo, 2005).

    Google Scholar 

  • 51.

    Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic