Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Google Scholar
Ford, A. T. & Goheen, J. R. Trophic cascades by large carnivores: A case for strong Inference and mechanism. Trend Ecol. Evol. 30, 725–735 (2015).
Google Scholar
Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698. https://doi.org/10.1038/ncomms10698 (2016).
Google Scholar
Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).
Google Scholar
Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory and trophic interactions. J. Mammal. 80, 385–399 (1999).
Google Scholar
Brown, J. S. Ecology of fear. In Encyclopedia of Animal Behaviour (ed. Chun, C.) (Academic Press, 2019).
Trussell, G. C., Ewanchuk, P. J. & Matassa, C. M. The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87, 2979–2984 (2006).
Google Scholar
Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).
Google Scholar
Say-Sallaz, E., Chamaillé-James, S., Fritz, H. & Valeix, M. Non-consumptive effects of predation in large terrestrial mammals: Mapping our knowledge and revealing the tip of the iceberg. Biol. Conserv. 235, 36–52 (2019).
Google Scholar
Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 113, 838–846 (2016).
Google Scholar
Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl. Acad. Sci. USA 106, 4947–4952 (2009).
Google Scholar
Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).
Google Scholar
Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates: A systematic review. Environ. Evid. 7, 13. https://doi.org/10.1186/s13750-018-0125-3 (2018).
Google Scholar
Creel, S. The control of risk hypothesis: Reactive vs proactive antipredator responses and stress-mediated vs food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).
Google Scholar
Riginos, C. Climate and the landscape of fear in an African savanna. J. Anim. Ecol. 84, 124–133 (2015).
Google Scholar
le Roux, E. G., Kerley, I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).
Google Scholar
Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).
Google Scholar
Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: A global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2018).
Google Scholar
Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).
Google Scholar
Courbin, N. et al. Reactive responses of zebra to lion encounters shape their predator-prey space game at large scale. Oikos 125, 829–838 (2016).
Google Scholar
van Buskirk, J. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14, 482–489 (2001).
Google Scholar
Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418 (2003).
Google Scholar
Templeton, C. N., Greene, E. & Davis, K. Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science 308, 1934–1937 (2005).
Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autonomy. Behav. Eco. 21, 91–96 (2009).
Google Scholar
Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).
Google Scholar
Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE https://doi.org/10.1371/journal.pone.0149098 (2016).
Google Scholar
Bertram, B. C. R. Serengeti Predators and their Social Systems in Serengeti: Dynamics of an Ecosystem, 221–285. (Sinclair, A. R. E. and Norton-Griffiths, M., Eds). (University of Chicago Press, Chicago, 1979).
Bailey, T. N. The African Leopard: Ecology and Behavior of a Solitary Felid (Columbia University Press, 1993).
Google Scholar
Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).
Google Scholar
McCleery, R. A. et al. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol. Conserv. 226, 54–62 (2018).
Google Scholar
Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).
Google Scholar
Sirami, C. & Monadjem, A. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers. Distrib. 18, 390–400 (2012).
Google Scholar
Estes, R. D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates (University of California Press, 2012).
Hayward, M. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313 (2006).
Google Scholar
Holekamp, K. E. & Dloniak, S. M. Intraspecific Variation in the Behavioral Ecology of a Tropical Carnivore, the Spotted Hyena in Advances in the Study of Behavior. Vol. 42 189–229 (Elsevier, 2010).
Retief, F. The Ecology of Spotted Hyena, Crocuta crocuta, in Majete Wildlife Reserve, Malawi. Dissertation. (Stellenbosch University, 2016).
Suraci, J. P. et al. A new automated behavioural response system to integrate playback experiments into camera trap studies. Methods Ecol. Evol. 8, 957–964 (2017).
Google Scholar
Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. Lond. Ser. B. https://doi.org/10.1098/rspb.2017.0433 (2017).
Google Scholar
Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B. 272, 2627–2634 (2005).
Scogings, P. F. Large herbivores and season independently affect woody stem circumference increment in a semi-arid savanna. Plant Ecol. 215, 1433–1443 (2014).
Google Scholar
Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Sub-region (Cambridge University Press, 2005).
Google Scholar
Canfield, R. H. Application of the line interception method in sampling range vegetation. J. For. 39, 388–394 (1941).
Favreau, F. R., Pays, O., Goldizen, A. W. & Fritz, H. Short-term behavioural responses of impalas in simulated antipredator and social contexts. PLoS ONE https://doi.org/10.1371/journal.pone.0084970 (2013).
Google Scholar
Suraci, J. P., Clinchy, M. & Zanette, L. Y. Do large carnivores and mesocarnivores have redundant impacts on intertidal prey?. PLoS ONE https://doi.org/10.1371/journal.pone.0170255 (2017).
Google Scholar
Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).
Google Scholar
Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Stud. Behav. 16, 229–249 (1986).
Google Scholar
Lind, J. & Cresswell, W. Determining the fitness consequences of anti-predation behavior. Behav. Ecol. 16, 945–956 (2005).
Google Scholar
Berger, J. Carnivore repatriation and holarctic prey: Narrowing the deficit in ecological effectiveness. Conserv. Biol. 21, 1105–1116 (2007).
Google Scholar
Dalerum, F. & Belton, L. African ungulates recognize a locally extinct native predator. Behav. Ecol. 26, 215–222 (2015).
Google Scholar
Palmer, M. S. & Gross, A. Eavesdropping in an African large mammal community: Antipredator responses vary according to signaler reliability. Anim. Behav. 137, 1–9 (2018).
Google Scholar
Crawley, M. J. Statistical Computing: An Introduction to Data Analysis Using S-PLUS (Wiley, 2002).
Google Scholar
Hodges, J. S. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects (CRC Press, 2016).
Google Scholar
Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley, 2002).
Google Scholar
Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
Google Scholar
Gorini, L. et al. Habitat heterogeneity and mammalian predator-prey interactions. Mammal Rev. 42, 55–77 (2011).
Google Scholar
Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Conserv. 232, 164–172 (2019).
Google Scholar
Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).
Google Scholar
Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 1–10. https://doi.org/10.1002/ecm.1313 (2018).
Google Scholar
Breitenmoser, U., Breitenmoser-Wursten, C., Carbyn, L. N. & Funk, S. M. Assessment of Carnivore Reintroduction in Carnivore Conservation (eds. J. L. Gittleman, S. M. Funk, D. W. Macdonald and R. K. Wayne) 241–280 (Cambridge University Press and Zoological Society of London, 2001).
Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assement. Oryx 41, 205–214 (2007).
Google Scholar
Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).
Google Scholar
Augustine, D. J. & Mcnaughton, S. J. Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J. Appl. Ecol. 41, 45–58 (2004).
Google Scholar
Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).
Google Scholar
Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. https://doi.org/10.1038/s41598-019-53071-y (2019).
Google Scholar
Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487–495 (2014).
Google Scholar
Source: Ecology - nature.com