in

Fine-root traits in the global spectrum of plant form and function

  • 1.

    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley and Sons, 2001).

  • 2.

    Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).

    Article 

    Google Scholar 

  • 3.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Kattge, J. et al. TRY plant trait database — enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).

    Article 

    Google Scholar 

  • 9.

    McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Eissenstat, D. M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763–782 (1992).

    Article 

    Google Scholar 

  • 12.

    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).

    Article 

    Google Scholar 

  • 13.

    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar 

  • 14.

    Shen, Y. et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Front. Plant Sci. 10, 1412 (2019).

    Article 

    Google Scholar 

  • 15.

    Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).

    Article 

    Google Scholar 

  • 16.

    Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    de la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).

    Article 

    Google Scholar 

  • 21.

    Liese, R., Alings, K. & Meier, I. C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 8, 315 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Liu, G. et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 188, 543–553 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Galland, T., Carmona, C. P., Götzenberger, L., Valencia, E. & de Bello, F. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecol. Indic. 116, 106488 (2020).

    Article 

    Google Scholar 

  • 26.

    Valverde‐Barrantes, O. J., Maherali, H., Baraloto, C. & Blackwood, C. B. Independent evolutionary changes in fine‐root traits among main clades during the diversification of seed plants. New Phytol. 228, 541–553 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).

    Article 

    Google Scholar 

  • 29.

    De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).

    Article 

    Google Scholar 

  • 31.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).

    Article 

    Google Scholar 

  • 33.

    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2021).

  • 34.

    McCormack, M. L. & Iversen, C. M. Physical and functional constraints on viable belowground acquisition strategies. Front. Plant Sci. 10, 1215 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Wells, C. E. & Eissenstat, D. M. Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J. Plant Growth Regul. 21, 324–334 (2002).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    USDA. USDA PLANTS Database (accessed 3rd July 2020); https://plants.sc.egov.usda.gov

  • 38.

    Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    BGCI. GlobalTreeSearch online database (accessed 3rd July 2020); https://www.bgci.org/globaltree_search.php

  • 40.

    The Plant List. The Plant List (accessed 17th February 2020); http://www.theplantlist.org

  • 41.

    Cayuela, L., Macarro, I., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (2019).

  • 42.

    Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Oliveira, B. F., Sheffers, B. R. & Costa, G. C. Decoupled erosion of amphibians’ phylogenetic and functional diversity due to extinction. Glob. Ecol. Biogeogr. 29, 309–319 (2020).

    Article 

    Google Scholar 

  • 44.

    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Article 

    Google Scholar 

  • 45.

    Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article 

    Google Scholar 

  • 46.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Whittakker, R. H. Communities and Ecosystems (Macmillan, 1975).

  • 48.

    Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 https://github.com/valentinitnelav/plotbiomes (2021).

  • 49.

    Ricklefs, R. E. The Economy of Nature (W. H. Freeman and Company, 2008).

  • 50.

    GBIF. GBIF Occurrence Download (accessed 15 December 2019); https://doi.org/10.15468/dl.thlxph

  • 51.

    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    Article 

    Google Scholar 

  • 52.

    Dinno, A. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran (2018).

  • 53.

    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. https://doi.org/10.18637/jss.v022.i04 (2007).

  • 54.

    Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v021.i07 (2015).

  • 55.

    Duong, T. ks: Kernel smoothing. R package version 1.11.5 https://CRAN.R-project.org/package=ks (2019).

  • 56.

    Carmona, C. P., Bello, F., Mason, N. W. H. & Lepš, J. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100, e02876 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Carmona, C. P. TPD: methods for measuring functional diversity based on Trait Probability Density. R package version 1.1.0. https://CRAN.R-project.org/package=TPD (2019).

  • 58.

    Duong, T. & Hazelton, M. L. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 59.

    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).

    Article 

    Google Scholar 

  • 61.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 https://CRAN.R-project.org/package=vegan (2019).

  • 63.

    Carmona, C. P. et al. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J. Appl. Ecol. 49, 1084–1093 (2012).

    Article 

    Google Scholar 

  • 64.

    Micó, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10, 1520 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).

    Article 

    Google Scholar 

  • 66.

    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. The density awakens: a reply to Blonder. Trends Ecol. Evol. 31, 667–669 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T. & Lepš, J. Which trait dissimilarity for functional diversity: trait means or trait overlap? J. Veg. Sci. 24, 807–819 (2013).

    Article 

    Google Scholar 

  • 69.

    Traba, J., Iranzo, E. C., Carmona, C. P. & Malo, J. E. Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos 126, 1400–1409 (2017).

    Article 

    Google Scholar 

  • 70.

    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex Hull Volume. Ecology 87, 1465–1471 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 71.

    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article 

    Google Scholar 

  • 72.

    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).

    Article 

    Google Scholar 

  • 73.

    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).

    Article 

    Google Scholar 

  • 74.

    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 111, 13757–13762 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Carmona, C. P., de Bello, F., Sasaki, T., Uchida, K. & Pärtel, M. Towards a common toolbox for rarity: a response to Violle et al. Trends Ecol. Evol. 32, 889–891 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 76.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Article 

    Google Scholar 

  • 78.

    Gower, J. C. General coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

    Article 

    Google Scholar 

  • 79.

    Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).

    Article 

    Google Scholar 

  • 80.

    Gherardi, L. A. & Sala, O. E. Global patterns and climatic controls of belowground net carbon fixation. Proc. Natl Acad. Sci. USA 117, 20038–20043 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    The language of change