in

Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts

  • 1.

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67 (2013).

    Google Scholar 

  • 3.

    Bernstein, R. A. & Gobbel, M. Partitioning of space in communities of ants. J. Anim. Ecol. 48, 931–942 (1979).

    Google Scholar 

  • 4.

    Jenkins, S. H. A size-distance relation in food selection by beavers. Ecology 61, 740–746 (2018).

    Google Scholar 

  • 5.

    Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: A case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).

    ADS 

    Google Scholar 

  • 6.

    Orians, G. H. & Pearson, N. E. On the theory of central place foraging. In Analysis of Ecological Systems (eds Horn, D. J. et al.) 154–177 (The Ohio State University Press, 1979).

  • 7.

    Schoener, T. W. Generality of the size-distance relation in models of optimal feeding. Am. Nat. 114, 902–914 (1979).

    MathSciNet 

    Google Scholar 

  • 8.

    Brown, M. J. F. & Gordon, D. M. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behav. Ecol. Sociobiol. 47, 195–203 (2000).

    Google Scholar 

  • 9.

    Dawo, B., Kalko, E. K. V. & Dietz, M. Spatial organization reflects the social organization in Bechstein’s bats. Ann. Zool. Fennici 50, 356–370 (2013).

    Google Scholar 

  • 10.

    Nordstrom, C. A., Battaile, B. C., Cotté, C. & Trites, A. W. Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Res. Part II Top. Stud. Oceanogr. 88–89, 78–96 (2013).

    ADS 

    Google Scholar 

  • 11.

    Bolton, M., Conolly, G., Carroll, M., Wakefield, E. D. & Caldow, R. A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis (London 1859) 161, 241–259 (2019).

    Google Scholar 

  • 12.

    Cairns, D. K. The regulation of seabird colony size: A hinterland model. Am. Nat. 134, 141–146 (1989).

    Google Scholar 

  • 13.

    Wakefield, E. D. et al. Space partitioning without territoriality in gannets. Science (80-.) 341, 68–70 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Masello, J. F. et al. Diving seabirds share foraging space and time within and among species. Ecosphere 1, art19 (2010).

    Google Scholar 

  • 15.

    Cecere, J. G. et al. Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor. Sci. Rep. 8, 11762 (2018).

    CAS 

    Google Scholar 

  • 16.

    Ainley, D. G., Ford, R. G., Brown, E. D., Suryan, R. M. & Irons, D. B. Prey resources, competition, and geographic structure of Kittiwake colonies in Prince William Sound. Ecology 84, 709–723 (2003).

    Google Scholar 

  • 17.

    Ramos, R. et al. Meta-population feeding grounds of cory’s shearwater in the subtropical Atlantic ocean: Implications for the definition of marine protected areas based on tracking studies. Divers. Distrib. 19, 1284–1298 (2013).

    Google Scholar 

  • 18.

    Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Hunt Jr., G. L. et al. Physical processes, prey abundance, and the foraging ecology of seabirds. In Proceedings of the 22nd International Ornithological Congress, Durban (eds Adams, N. J. & Slotow, R. H.) 2040–2056 (BirdLife South Africa, 1999).

  • 20.

    Weimerskirch, H. Are seabirds foraging for unpredictable resources? Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).

    ADS 

    Google Scholar 

  • 21.

    Benoit-Bird, K. J. et al. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS ONE 8, e53348 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471 (2014).

    Google Scholar 

  • 23.

    Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Coastal habitat use by ringed seals Pusa hispida following a regional sea-ice collapse: Importance of glacial refugia in a changing Arctic. Mar. Ecol. Prog. Ser. 545, 261–277 (2016).

    ADS 

    Google Scholar 

  • 24.

    Nishizawa, B. et al. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES J. Mar. Sci. 77, 711–720 (2020).

    Google Scholar 

  • 25.

    Grémillet, D. et al. Arctic warming: Nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).

    ADS 

    Google Scholar 

  • 26.

    Hamilton, C. D. et al. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol. Lett. 15, 20180834 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Hartley, C. H. & Fisher, J. The marine foods of birds in an inland fjord region in West Spitsbergen: Part 2. Birds. J. Anim. Ecol. 5, 370–389 (1936).

    Google Scholar 

  • 28.

    Everett, A. et al. Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals. Sci. Rep. 8, 13467 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 2169–2185 (2015).

    ADS 

    Google Scholar 

  • 30.

    Urbański, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for seabirds in tidewater glacier bays. Sci. Rep. 7, 43999 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Stempniewicz, L. et al. Marine birds and mammals foraging in the rapidly deglaciating Arctic fjord—Numbers, distribution and habitat preferences. Clim. Change 140, 533–548 (2017).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Stempniewicz, L. et al. Advection of Atlantic water masses influences seabird community foraging in a high-Arctic fjord. Prog. Oceanogr. 193, 102549 (2021).

    Google Scholar 

  • 33.

    Dragańska-Deja, K., Błaszczyk, M., Deja, K., Wesławski, J. M. & Rodak, J. Tidewater glaciers as feeding spots for the Black-legged kittiwake (Rissa tridactyla): A citizen science approach. Polish Polar Res. 41, 69–93 (2020).

    Google Scholar 

  • 34.

    Bertrand, P. et al. Feeding at the front line: interannual variation in the use of glacier fronts by foraging black-legged kittiwakes. Mar. Ecol. Prog. Ser. 677, 197–208 (2021).

  • 35.

    Walsh, P. M. et al. Seabird Monitoring Handbook for Britain and Ireland. A Compilation of Methods for Survey and Monitoring of Breeding Seabirds (JNCC/RSPB/ITE/Seabird Group, 1995).

    Google Scholar 

  • 36.

    Anker-Nilssen, T. et al. Key-Site Monitoring in Norway 2018, Including Svalbard and Jan Mayen (SEAPOP, 2020).

    Google Scholar 

  • 37.

    Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Coulson, J. C. Sexing black-legged kittiwakes by measurement. Ringing Migr. 24, 233–239 (2009).

    ADS 

    Google Scholar 

  • 39.

    Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).

    ADS 

    Google Scholar 

  • 40.

    Christensen-Dalsgaard, S., May, R. & Lorentsen, S. H. Taking a trip to the shelf: Behavioral decisions are mediated by the proximity to foraging habitats in the black-legged kittiwake. Ecol. Evol. 8, 866–878 (2018).

    PubMed 

    Google Scholar 

  • 41.

    Coulson, J. C. & Macdonald, A. Recent changes in the habits of the Kittiwake. Br. Birds 55, 171–177 (1962).

    Google Scholar 

  • 42.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.

  • 43.

    Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).

    Google Scholar 

  • 44.

    Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Fleming, C. H. & Calabrese, J. M. ctmm: Continuous-time movement modeling. R package version 0.5.10. https://cran.r-project.org/package=ctmm (2020).

  • 46.

    Dong, X., Fleming, C. H., Noonan, M. J. & Calabrese, J. M. ctmmweb: A Shiny web app for the ctmm movement analysis package. https://github.com/ctmm-initiative/ctmmweb. (2018).

  • 47.

    Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).

    Google Scholar 

  • 48.

    Noonan, M. J. et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol. Monogr. 89, 1–21 (2019).

    Google Scholar 

  • 49.

    Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154–E167 (2014).

    PubMed 

    Google Scholar 

  • 50.

    Calabrese, J. M., Fleming, C. H. & Gurarie, E. Ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).

    Google Scholar 

  • 51.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 52.

    Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).

    Google Scholar 

  • 53.

    Beal, M. et al. BirdLifeInternational/track2kba: First Release (Version 0.5.0). Zenodo. https://doi.org/10.5281/zenodo.3823902 (2020).

  • 54.

    Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).

    Google Scholar 

  • 55.

    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Google Scholar 

  • 56.

    Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).

    MathSciNet 
    MATH 

    Google Scholar 

  • 57.

    Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–109 (1943).

    MathSciNet 
    MATH 

    Google Scholar 

  • 58.

    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).

    Google Scholar 

  • 59.

    Carneiro, A. P. B. et al. Consistency in migration strategies and habitat preferences of brown skuas over two winters, a decade apart. Mar. Ecol. Prog. Ser. 553, 267–281 (2016).

    ADS 

    Google Scholar 

  • 60.

    Dehnhard, N. et al. High inter-and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? J. Anim. Ecol. 89, 104–119 (2020).

    PubMed 

    Google Scholar 

  • 61.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 62.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    MATH 

    Google Scholar 

  • 63.

    Oksanen, J. et al. vegan: Community Ecology Package (2019). R package version 2.5-7. https://CRAN.R-project.org/package=vegan

  • 64.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).

    MATH 

    Google Scholar 

  • 65.

    Pebesma, E. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2). https://cran.r-project.org/doc/Rnews/ (2005).

  • 66.

    Paredes, R. et al. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf. PLoS ONE 9, e92520 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Hartig, F. Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa (2020).

  • 68.

    Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: A permutational regression approach. Evolution 48, 1487–1499 (1994).

    Google Scholar 

  • 69.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    Google Scholar 

  • 70.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).

    Google Scholar 

  • 71.

    Zaccarelli, N., Mancinelli, G. & Bolnick, D. I. RInSp: An R package for the analysis of individual specialisation in resource use. Methods Ecol. Evol. 4, 1018–1023 (2013).

    Google Scholar 

  • 72.

    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).

    ADS 

    Google Scholar 

  • 74.

    Fauchald, P. Spatial interaction between seabirds and prey: Review and synthesis. Mar. Ecol. Prog. Ser. 391, 139–151 (2009).

    ADS 

    Google Scholar 

  • 75.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Google Scholar 

  • 76.

    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).

    Google Scholar 

  • 77.

    Carroll, D. et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).

    ADS 

    Google Scholar 

  • 78.

    Halbach, L. et al. Tidewater glaciers and bedrock characteristics control the phytoplankton growth environment in a fjord in the Arctic. Front. Mar. Sci. 6, 254 (2019).

    Google Scholar 

  • 79.

    Pramanik, A. et al. Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard. Cryosph. Discuss. [preprint]. https://doi.org/10.5194/tc-2020-197.

    Article 

    Google Scholar 

  • 80.

    Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Arimitsu, M. L., Piatt, J. F. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).

    ADS 

    Google Scholar 

  • 82.

    Haney, J. Seabird segregation at Gulf Stream frontal eddies. Mar. Ecol. Prog. Ser. 28, 279–285 (1986).

    ADS 

    Google Scholar 

  • 83.

    Hyrenbach, K. D., Veit, R. R., Weimerskirch, H. & Hunt, G. L. Jr. Seabird associations with mesoscale eddies: The subtropical Indian Ocean. Mar. Ecol. Prog. Ser. 324, 271–279 (2006).

    ADS 

    Google Scholar 

  • 84.

    Cox, S. L. et al. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots. R. Soc. Open Sci. 3, 160317 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Schneider, D. C. Seabirds and fronts: A brief overview. Polar Res. 8, 17–21 (1990).

    CAS 

    Google Scholar 

  • 86.

    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).

    Google Scholar 

  • 87.

    Durazo, R., Harrison, N. M. & Hill, A. E. Seabird observations at a tidal mixing front in the Irish Sea. Estuar. Coast. Shelf Sci. 47, 153–164 (1998).

    ADS 

    Google Scholar 

  • 88.

    Wakefield, E. D., Phillips, R. A. & Matthiopoulos, J. Quantifying habitat use and preferences of pelagic seabirds using individual movement data: A review. Mar. Ecol. Prog. Ser. 391, 165–182 (2009).

    ADS 

    Google Scholar 

  • 89.

    How, P. et al. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere 11, 2691–2710 (2017).

    ADS 

    Google Scholar 

  • 90.

    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 91.

    Irons, D. B. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79, 647–655 (1998).

    Google Scholar 

  • 92.

    Piatt, J. F. et al. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: Implications for conservation. Deep Res. Part II Top. Stud. Oceanogr. 53, 387–398 (2006).

    ADS 

    Google Scholar 

  • 93.

    Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis (London 1859) 115, 517–534 (1973).

    Google Scholar 

  • 94.

    Weimerskirch, H., Bertrand, S., Silva, J., Marques, J. C. & Goya, E. Use of social information in seabirds: Compass rafts indicate the heading of food patches. PLoS ONE 5, e9928 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Ainley, D. G. et al. Geographic structure of Adélie penguin populations: Overlap in colony-specific foraging areas. Ecol. Monogr. 74, 159–178 (2004).

    Google Scholar 

  • 96.

    Fretwell, S. D. & Lucas, H. L. J. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1970).

    Google Scholar 


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria