Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).
Google Scholar
Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67 (2013).
Bernstein, R. A. & Gobbel, M. Partitioning of space in communities of ants. J. Anim. Ecol. 48, 931–942 (1979).
Jenkins, S. H. A size-distance relation in food selection by beavers. Ecology 61, 740–746 (2018).
Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: A case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).
Google Scholar
Orians, G. H. & Pearson, N. E. On the theory of central place foraging. In Analysis of Ecological Systems (eds Horn, D. J. et al.) 154–177 (The Ohio State University Press, 1979).
Schoener, T. W. Generality of the size-distance relation in models of optimal feeding. Am. Nat. 114, 902–914 (1979).
Google Scholar
Brown, M. J. F. & Gordon, D. M. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behav. Ecol. Sociobiol. 47, 195–203 (2000).
Dawo, B., Kalko, E. K. V. & Dietz, M. Spatial organization reflects the social organization in Bechstein’s bats. Ann. Zool. Fennici 50, 356–370 (2013).
Nordstrom, C. A., Battaile, B. C., Cotté, C. & Trites, A. W. Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Res. Part II Top. Stud. Oceanogr. 88–89, 78–96 (2013).
Google Scholar
Bolton, M., Conolly, G., Carroll, M., Wakefield, E. D. & Caldow, R. A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis (London 1859) 161, 241–259 (2019).
Cairns, D. K. The regulation of seabird colony size: A hinterland model. Am. Nat. 134, 141–146 (1989).
Wakefield, E. D. et al. Space partitioning without territoriality in gannets. Science (80-.) 341, 68–70 (2013).
Google Scholar
Masello, J. F. et al. Diving seabirds share foraging space and time within and among species. Ecosphere 1, art19 (2010).
Cecere, J. G. et al. Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor. Sci. Rep. 8, 11762 (2018).
Google Scholar
Ainley, D. G., Ford, R. G., Brown, E. D., Suryan, R. M. & Irons, D. B. Prey resources, competition, and geographic structure of Kittiwake colonies in Prince William Sound. Ecology 84, 709–723 (2003).
Ramos, R. et al. Meta-population feeding grounds of cory’s shearwater in the subtropical Atlantic ocean: Implications for the definition of marine protected areas based on tracking studies. Divers. Distrib. 19, 1284–1298 (2013).
Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).
Google Scholar
Hunt Jr., G. L. et al. Physical processes, prey abundance, and the foraging ecology of seabirds. In Proceedings of the 22nd International Ornithological Congress, Durban (eds Adams, N. J. & Slotow, R. H.) 2040–2056 (BirdLife South Africa, 1999).
Weimerskirch, H. Are seabirds foraging for unpredictable resources? Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).
Google Scholar
Benoit-Bird, K. J. et al. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS ONE 8, e53348 (2013).
Google Scholar
Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471 (2014).
Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Coastal habitat use by ringed seals Pusa hispida following a regional sea-ice collapse: Importance of glacial refugia in a changing Arctic. Mar. Ecol. Prog. Ser. 545, 261–277 (2016).
Google Scholar
Nishizawa, B. et al. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES J. Mar. Sci. 77, 711–720 (2020).
Grémillet, D. et al. Arctic warming: Nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).
Google Scholar
Hamilton, C. D. et al. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol. Lett. 15, 20180834 (2019).
Google Scholar
Hartley, C. H. & Fisher, J. The marine foods of birds in an inland fjord region in West Spitsbergen: Part 2. Birds. J. Anim. Ecol. 5, 370–389 (1936).
Everett, A. et al. Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals. Sci. Rep. 8, 13467 (2018).
Google Scholar
Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 2169–2185 (2015).
Google Scholar
Urbański, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for seabirds in tidewater glacier bays. Sci. Rep. 7, 43999 (2017).
Google Scholar
Stempniewicz, L. et al. Marine birds and mammals foraging in the rapidly deglaciating Arctic fjord—Numbers, distribution and habitat preferences. Clim. Change 140, 533–548 (2017).
Google Scholar
Stempniewicz, L. et al. Advection of Atlantic water masses influences seabird community foraging in a high-Arctic fjord. Prog. Oceanogr. 193, 102549 (2021).
Dragańska-Deja, K., Błaszczyk, M., Deja, K., Wesławski, J. M. & Rodak, J. Tidewater glaciers as feeding spots for the Black-legged kittiwake (Rissa tridactyla): A citizen science approach. Polish Polar Res. 41, 69–93 (2020).
Bertrand, P. et al. Feeding at the front line: interannual variation in the use of glacier fronts by foraging black-legged kittiwakes. Mar. Ecol. Prog. Ser. 677, 197–208 (2021).
Walsh, P. M. et al. Seabird Monitoring Handbook for Britain and Ireland. A Compilation of Methods for Survey and Monitoring of Breeding Seabirds (JNCC/RSPB/ITE/Seabird Group, 1995).
Anker-Nilssen, T. et al. Key-Site Monitoring in Norway 2018, Including Svalbard and Jan Mayen (SEAPOP, 2020).
Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).
Google Scholar
Coulson, J. C. Sexing black-legged kittiwakes by measurement. Ringing Migr. 24, 233–239 (2009).
Google Scholar
Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).
Google Scholar
Christensen-Dalsgaard, S., May, R. & Lorentsen, S. H. Taking a trip to the shelf: Behavioral decisions are mediated by the proximity to foraging habitats in the black-legged kittiwake. Ecol. Evol. 8, 866–878 (2018).
Google Scholar
Coulson, J. C. & Macdonald, A. Recent changes in the habits of the Kittiwake. Br. Birds 55, 171–177 (1962).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.
Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).
Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).
Google Scholar
Fleming, C. H. & Calabrese, J. M. ctmm: Continuous-time movement modeling. R package version 0.5.10. https://cran.r-project.org/package=ctmm (2020).
Dong, X., Fleming, C. H., Noonan, M. J. & Calabrese, J. M. ctmmweb: A Shiny web app for the ctmm movement analysis package. https://github.com/ctmm-initiative/ctmmweb. (2018).
Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).
Noonan, M. J. et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol. Monogr. 89, 1–21 (2019).
Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154–E167 (2014).
Google Scholar
Calabrese, J. M., Fleming, C. H. & Gurarie, E. Ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).
Google Scholar
Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).
Beal, M. et al. BirdLifeInternational/track2kba: First Release (Version 0.5.0). Zenodo. https://doi.org/10.5281/zenodo.3823902 (2020).
Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).
Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).
Google Scholar
Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–109 (1943).
Google Scholar
Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
Carneiro, A. P. B. et al. Consistency in migration strategies and habitat preferences of brown skuas over two winters, a decade apart. Mar. Ecol. Prog. Ser. 553, 267–281 (2016).
Google Scholar
Dehnhard, N. et al. High inter-and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? J. Anim. Ecol. 89, 104–119 (2020).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Google Scholar
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package (2019). R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).
Google Scholar
Pebesma, E. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2). https://cran.r-project.org/doc/Rnews/ (2005).
Paredes, R. et al. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf. PLoS ONE 9, e92520 (2014).
Google Scholar
Hartig, F. Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa (2020).
Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: A permutational regression approach. Evolution 48, 1487–1499 (1994).
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).
Zaccarelli, N., Mancinelli, G. & Bolnick, D. I. RInSp: An R package for the analysis of individual specialisation in resource use. Methods Ecol. Evol. 4, 1018–1023 (2013).
Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
Google Scholar
Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).
Google Scholar
Fauchald, P. Spatial interaction between seabirds and prey: Review and synthesis. Mar. Ecol. Prog. Ser. 391, 139–151 (2009).
Google Scholar
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).
Carroll, D. et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).
Google Scholar
Halbach, L. et al. Tidewater glaciers and bedrock characteristics control the phytoplankton growth environment in a fjord in the Arctic. Front. Mar. Sci. 6, 254 (2019).
Pramanik, A. et al. Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard. Cryosph. Discuss. [preprint]. https://doi.org/10.5194/tc-2020-197.
Google Scholar
Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).
Google Scholar
Arimitsu, M. L., Piatt, J. F. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).
Google Scholar
Haney, J. Seabird segregation at Gulf Stream frontal eddies. Mar. Ecol. Prog. Ser. 28, 279–285 (1986).
Google Scholar
Hyrenbach, K. D., Veit, R. R., Weimerskirch, H. & Hunt, G. L. Jr. Seabird associations with mesoscale eddies: The subtropical Indian Ocean. Mar. Ecol. Prog. Ser. 324, 271–279 (2006).
Google Scholar
Cox, S. L. et al. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots. R. Soc. Open Sci. 3, 160317 (2016).
Google Scholar
Schneider, D. C. Seabirds and fronts: A brief overview. Polar Res. 8, 17–21 (1990).
Google Scholar
Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).
Durazo, R., Harrison, N. M. & Hill, A. E. Seabird observations at a tidal mixing front in the Irish Sea. Estuar. Coast. Shelf Sci. 47, 153–164 (1998).
Google Scholar
Wakefield, E. D., Phillips, R. A. & Matthiopoulos, J. Quantifying habitat use and preferences of pelagic seabirds using individual movement data: A review. Mar. Ecol. Prog. Ser. 391, 165–182 (2009).
Google Scholar
How, P. et al. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere 11, 2691–2710 (2017).
Google Scholar
Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).
Google Scholar
Irons, D. B. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79, 647–655 (1998).
Piatt, J. F. et al. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: Implications for conservation. Deep Res. Part II Top. Stud. Oceanogr. 53, 387–398 (2006).
Google Scholar
Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis (London 1859) 115, 517–534 (1973).
Weimerskirch, H., Bertrand, S., Silva, J., Marques, J. C. & Goya, E. Use of social information in seabirds: Compass rafts indicate the heading of food patches. PLoS ONE 5, e9928 (2010).
Google Scholar
Ainley, D. G. et al. Geographic structure of Adélie penguin populations: Overlap in colony-specific foraging areas. Ecol. Monogr. 74, 159–178 (2004).
Fretwell, S. D. & Lucas, H. L. J. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1970).
Source: Ecology - nature.com