in

First come, first served: superinfection exclusion in Deformed wing virus is dependent upon sequence identity and not the order of virus acquisition

  • 1.

    Honey: market value worldwide 2007–2016. https://www.statista.com/statistics/933928/global-market-value-of-honey/. Accessed Nov 2020.

  • 2.

    Highfield AC, El Nagar A, Mackinder LCM, Noël LM-LJ, Hall MJ, Martin SJ, et al. Deformed wing virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol. 2009;75:7212–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, van Oers MM. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol. 2004;85:3747–55.

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Lanzi G, Miranda JRD, Boniotti MB, Cameron CE, Lavazza A, Capucci L, et al. Molecular and biological characterization of Deformed wing virus of honeybees (Apis mellifera L.). J Virol. 2006;80:4998–5009.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Fujiyuki T, Takeuchi H, Ono M, Ohka S, Sasaki T, Nomoto A, et al. Kakugo virus from brains of aggressive worker honeybees. Adv Virus Res. 2005;65:1–27.

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y, Alaux C, et al. Evidence for positive selection and recombination hotspots in Deformed wing virus (DWV). Sci Rep. 2017;7:41045.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology. 2011;417:106–12.

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A, Vanengelsdorp D, et al. Recent spread of Varroa destructor virus – 1, a honey bee pathogen, in the United States. Sci Rep. 2017;7:17447.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol. 2011;92:156–61.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Mordecai GJ, Brettell LE, Martin SJ, Dixon D, Jones IM, Schroeder DC. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 2015;10:1182–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev. 2020; fuaa070, https://doi.org/10.1093/femsre/fuaa070.

  • 12.

    Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC. Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. ISME J. 2016;10:1264–73.

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S, Brown MJF, et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc Biol Sci. 2016;283:443–9.

    Google Scholar 

  • 14.

    Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science. 2016;351:594–7.

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    de Miranda JR, Genersch E. Deformed wing virus. J Invertebr Pathol. 2010;103:S48–S61.

    PubMed 

    Google Scholar 

  • 16.

    Roberts JMK, Anderson DL, Durr PA. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci Rep. 2017;7:6925.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Yue C, Schröder M, Gisder S, Genersch E. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J Gen Virol. 2007;88:2329–36.

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Ryabov EV, Childers AK, Lopez D, Grubbs K, Posada-Florez F, Weaver D, et al. Dynamic evolution in the key honey bee pathogen deformed wing virus: novel insights into virulence and competition using reverse genetics. PLoS Biol. 2019; 17; https://doi.org/10.1371/journal.pbio.3000502.

  • 19.

    Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–6.

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Loope KJ, Baty JW, Lester PJ, Wilson Rankin EE. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc Biol Sci. 2019;286:20182499.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014;10:e1004230.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Kevill JL, de Souza FS, Sharples C, Oliver R, Schroeder DC, Martin SJ. DWV-A lethal to honey bees (Apis mellifera): a colony level survey of DWV variants (A, B, and C) in England, Wales, and 32 States across the US. Viruses. 2019;11:426.

    PubMed Central 

    Google Scholar 

  • 23.

    Tehel A, Vu Q, Bigot D, Gogol-Döring A, Koch P, Jenkins C, et al. The two prevalent genotypes of an emerging infectious disease, Deformed wing virus, cause equally low pupal mortality and equally high wing deformities in host honey bees. Viruses. 2019;11:114.

    CAS 
    PubMed Central 

    Google Scholar 

  • 24.

    Norton AM, Remnant EJ, Buchmann G, Beekman M. Accumulation and competition amongst Deformed wing virus genotypes in naïve Australian honeybees provides insight Into the increasing global prevalence of genotype B. Front Microbiol. 2020;11:620.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Gusachenko ON, Woodford L, Balbirnie-Cumming K, Campbell EM, Christie CR, Bowman AS, et al. Green bees: reverse genetic analysis of Deformed wing virus transmission, replication, and tropism. Viruses. 2020;12:532.

    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Steck FT, Rubin H. The mechanism of interference between an avian leukosis virus and Rous sarcoma virus. II. Early steps of infection by RSV of cells under conditions of interference. Virology. 1966;29:642–53.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Adams RH, Brown DT. BHK cells expressing Sindbis virus-induced homologous interference allow the translation of nonstructural genes of superinfecting virus. J Virol. 1985;54:351–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58:491–562.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Karpf AR, Lenches E, Strauss EG, Strauss JH, Brown DT. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol. 1997;71:7119–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Singh IR, Suomalainen M, Varadarajan S, Garoff H, Helenius A. Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology. 1997;231:59–71.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Geib T, Sauder C, Venturelli S, Hässler C, Staeheli P, Schwemmle M. Selective virus resistance conferred by expression of Borna disease virus nucleocapsid components. J Virol. 2003;77:4283–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Edwards MC, Bragg J, Jackson AO. Natural resistance mechanisms to viruses in barley. In: Loebenstein G and Carr JP, editors. Natural Resistance Mechanisms of Plants to Viruses. Dordrecht, The Netherlands: Springer; 2006. p. 465–501.

  • 33.

    Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY. A viral protein mediates superinfection exclusion at the whole-organism level but Is not required for exclusion at the cellular Level. J Virol. 2014;88:11327–38.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol. 2005;15:714–23.

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Tscherne DM, Evans MJ, von Hahn T, Jones CT, Stamataki Z, McKeating JA, et al. Superinfection exclusion in cells infected with hepatitis C virus. J Virol. 2007;81:3693–703.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, Horak RD, et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367:573–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Lamp B, Url A, Seitz K, Rgen Eichhorn J, Riedel C, Sinn LJ, et al. Construction and rescue of a molecular clone of Deformed wing virus (DWV). PLoS ONE. 2016;11:e0164639.

  • 38.

    Gusachenko ON, Woodford L, Balbirnie-Cumming K, Ryabov EV, Evans DJ. Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis. Sci Rep. 2020;10:16847.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Routh A, Johnson JE. Discovery of functional genomic motifs in viruses with ViReMa – a Virus Recombination Mapper – for analysis of next-generation sequencing data. Nucleic Acids Res. 2014;42:e11.

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Ryabov EV, Christmon K, Heerman MC, Posada-Florez F, Harrison RL, Chen Y, et al. Development of a honey bee RNA virus vector based on the genome of a Deformed wing virus. Viruses. 2020;12:374.

    CAS 
    PubMed Central 

    Google Scholar 

  • 41.

    Mueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol. 1998;72:20–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Kirkegaard K, Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Egger D, Bienz K. Recombination of poliovirus RNA proceeds in mixed replication complexes originating from distinct replication start sites. J Virol. 2002;76:10960–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length ‘imprecise’ Intermediates. PLoS Pathog. 2014;10; https://doi.org/10.1371/journal.ppat.1004191.

  • 45.

    de Miranda JR, Fries I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J Invertebr Pathol. 2008;98:184–9.

    PubMed 

    Google Scholar 

  • 46.

    Yañez O, Jaffé R, Jarosch A, Fries I, Robin FAM, Robert JP, et al. Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): Implications for sexual transmission of a major honey bee virus. Apidologie. 2012;43:17–30.

    Google Scholar 

  • 47.

    Simon KO, Cardamone JJ Jr, Whitaker-Dowling PA, Youngner JS, Widnell CC. Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology. 1990;177:375–9.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Stevenson M, Meier C, Mann AM, Chapman N, Wasiak A. Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell. 1988;53:483–96.

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Bratt MA, Rubin H.Specific interference among strains of Newcastle disease virus. II. Comparison of interference by active and inactive virus.Virology. 1968;35:381–94.

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Zou G, Zhang B, Lim P-Y, Yuan Z, Bernard KA, Shi P-Y. Exclusion of West Nile virus superinfection through RNA replication. J Virol. 2009;83:11765–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Ziebell H, Carr JP. Cross-protection: a century of mystery. Adv Virus Res. 2010;76:211–64.

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Folimonova SY. Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol. 2013;4; https://doi.org/10.3389/fmicb.2013.00076.

  • 53.

    Gisder S, Genersch E. Direct evidence for infection of mites with the bee-pathogenic Deformed wing virus variant B – but not variant A – via fluorescence-hybridization analysis. J Virol. 2021;95:e01786–20.

    CAS 

    Google Scholar 

  • 54.

    Posada-Florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci Rep. 2019;9:12445.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Barr JN, Fearns R. How RNA viruses maintain their genome integrity. J Gen Virol. 2010;91:1373–87.

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol. 2018;99:1345–56.

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019;11:859.

    CAS 
    PubMed Central 

    Google Scholar 

  • 58.

    Alnaji FG, Bentley K, Pearson A, Woodman A, Moore JD, Fox H, et al. Recombination in enteroviruses is a ubiquitous event independent of sequence homology and RNA structure. 2020; preprint at bioRxiv; https://doi.org/10.1101/2020.09.29.319285.

  • 59.

    Brutscher LM, Flenniken ML. RNAi and antiviral defense in the honey bee. J Immunol Res. 2015;2015:941897.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Chejanovsky N, Ophir R, Schwager MS, Slabezki Y, Grossman S, Cox-Foster D. Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology. 2014;454-5:176–83.

    Google Scholar 

  • 61.

    Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol. 2012;21:446–55.

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, et al. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, hymenoptera: Apidae). PLoS Pathog. 2010;6:e1001160.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol. 2009;18:55–60.

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset