Simões, R. A., Reis, L. G., Bento, J. M., Solter, L. F. & Delalibera, I. Jr. Biological and behavioral parameters of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae) are altered by the pathogen Nosema sp. (Microsporidia: Nosematidae). Biol. Control 63, 164–171 (2012).
Google Scholar
Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).
Google Scholar
Himler, A. G. et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by the fitness benefits and female bias. Science 332, 254–256 (2011).
Google Scholar
Lu, M., Wingfield, M. J., Gillette, N. & Sun, J. H. Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion. Ecology 92, 2013–2019 (2011).
Google Scholar
Vilcinskas, A., Stoecker, K., Schmidtberg, H., Röhrich, C. R. & Vogel, H. Invasive harlequin ladybird carries biological weapons against native competitors. Science 340, 862–863 (2013).
Google Scholar
Zhao, L. et al. A native fungal symbiont facilitates the prevalence and development of an invasive pathogen–native vector symbiosis. Ecology 94, 2817–2826 (2013).
Google Scholar
Solter, L. F., Becnel, J. J. & Vávra, J. Research methods for entomopathogenic microsporidia and other protists. Manual of Techniques in Invertebrate Pathology 329–371 (2012).
Maddox, J. V. Protozoan diseases. Epizootiol. Insect Dis. 1, 417–452 (1987).
Latchininsky, A. V. & VanDyke, K. A. Grasshopper and locust control with poisoned baits: a renaissance of the old strategy?. Outlooks Pest Manag. 17, 105–111 (2006).
Google Scholar
Sweeney, A. W. & Becnel, J. J. Potential of microsporidia for the control of mosquitoes. Parasitol. Today. 7, 217–220 (1991).
Google Scholar
Capella-Gutierrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47–52 (2012).
Google Scholar
Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).
Google Scholar
Tooke, F. G. C. The Eucalyptus Snout beetle, Gonipterus scutellatus Gyll. A study of its ecology and control by biological means Union of South Africa, Department of Agriculture. Entomol. Mem. 3, 1–184 (1955).
Mapondera, T. S., Burgess, T., Matsuki, M. & Oberprieler, R. G. Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust. J. Entomol. 51, 175–188 (2012).
Google Scholar
Valente, C. et al. Economic outcome of classical biological control: a case study on the Eucalyptus snout beetle, Gonipterus platensis, and the parasitoid Anaphes nitens. Ecol Econ. 149, 40–47 (2018).
Google Scholar
Ansari, M. J., Al-Ghamdi, A., Nuru, A., Khan, K. A. & Alattal, Y. Geographical distribution and molecular detection of Nosema ceranae from indigenous honeybees of Saudi Arabia. Saudi J. Biol. Sci 24, 983–991 (2017).
Google Scholar
Ovcharenko, M., Świątek, P., Ironside, J. & Skalski, T. Orthosomella lipae sp. n. (Microsporidia) a parasite of the weevil, Liophloeus lentus Germar, 1824 (Coleoptera: Curculionidae). J. Invertebr. Pathol. 112, 33–40 (2013).
Google Scholar
Weiser, J. A new microsporidian from the bark beetle Pityokteines curvidens Germar (Coleoptera, Scolytidae) in Czechoslovakia. J. Invertebr. Pathol. 3, 324–329 (1961).
Malone, L. A. A new pathogen, Microsporidium itiiti n. sp. (Microsporida), from the Argentine Stem Weevil, Listronotus bonariensis (Coleoptera, Curculionidae). J. Protozool. 32, 535–541 (1985).
Google Scholar
Purrini, K. & Weiser, J. Ultrastructural study of the microsporidian Chytridiopsis typographi (Chytridiopsida: Microspora) infecting the bark beetle, Ips typographus (Scolytidae: Coleoptera), with new data on spore dimorphism. J. Invertebr. Pathol. 45, 66–74 (1985).
Google Scholar
Yaman, M., Radek, R., Aslan, I. & Erturk, O. Characteristic features of Nosema phyllotretae Weiser 1961, a microsporidian parasite of Phyllotreta atra (Coleoptera: Chrysomelidae) in Turkey. Zool. Stud. Taipei. 44, 368 (2005).
Zhu, F. et al. A new isolate of Nosema sp. (Microsporidia, Nosematidae) from Phyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China. Jour J. Invertebr. Pathol. 106, 339–342 (2011).
Google Scholar
Andreadis, T. G., Takaoka, H., Otsuka, Y. & Vossbrinck, C. R. Morphological and molecular characterization of a microsporidian parasite, Takaokaspora nipponicus n. gen. n. sp. from the invasive rock pool mosquito, Ochlerotatus japonicus japonicus. J. Invertebr. Pathol. 114, 161–172 (2013).
Google Scholar
Sapir, A. et al. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Front. Microbiol. 5, 43–52 (2014).
Google Scholar
Solter, L. F., Maddox, J. V. & McManus, M. L. Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J. Invertebr. Pathol. 69, 135–150 (1997).
Google Scholar
Knell, J. D., Allen, G. E. & Hazard, E. I. Light and electron microscope study of Thelohania solenopsae n. sp. (Microsporida: Protozoa) in the red imported fire ant Solenopsis invict. J. Invertebr. Pathol. 29, 192–200 (1977).
Google Scholar
Henry, J. E., & Oma, E. A. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. Microbial Control of Pests and Plant Diseases 1970–1980 (1981).
Vávra, J. & Maddox, J. V. Methods in microsporidiology. In Biology of the Microsporidia 281–319 (Springer, Boston, 1976).
Simões, R. A., Feliciano, J. R., Solter, L. F. & Delalibera, I. Jr. Impacts of Nosema sp. (Microsporidia: Nosematidae) on the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). J. Invertebr. Pathol. 129, 7–12 (2015).
Google Scholar
Inglis, G. D., Lawrence, A. M. & Davis, F. M. Impact of a novel species of Nosema on the southwestern corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 96, 12–20 (2003).
Google Scholar
Zheng, H. Q. et al. Spore loads may not be used alone as a direct indicator of the severity of Nosema ceranae infection in honey bees Apis mellifera (Hymenoptera: Apidae). J. Econ. Entomol. 107, 2037–2044 (2014).
Google Scholar
Goettel, M. S., Inglis, G. D. & Lacey, L. A. Manual of Techniques in Invertebrate Pathology (Academic Press, 2012).
Canning, E. U., Curry, A., Cheney, S., Lafranchi-Tristem, N. J., Haque, M. A. Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119, 273–286 (1999).
Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J. Invertebr. Pathol. 83, 51–59 (2003).
Google Scholar
Cai, S. F., Lu, X. M., Qiu, H. H., Li, M. Q. & Feng, Z. Z. Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J. Integr. Agric. 11, 1321–1326 (2012).
Google Scholar
Dong, S., Shen, Z., Xu, L. & Zhu, F. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia. Curr. Microbiol. 60, 30 (2010).
Google Scholar
Becnel, J. J. & Andreadis, T. G. Microsporidia in insects. The microsporidia and microsporidiosis 447-501 (1999).
Knell, R. J. & Webberley, K. M. Sexually transmitted diseases of insects: Distribution, evolution, ecology and host behaviour. Biol. Rev. 79, 557–581 (2004). (PERMANECE)
Bell, H. A., Down, R. E., Kirkbride‐Smith, A. E. & Edwards, J. P. Effect of microsporidian infection in Lacanobia oleracea (Lep., Noctuidae) on prey selection and consumption by the spined soldier bug Podisus maculiventris (Het., Pentatomidae). J. Appl. Entomol. 128(8), 548–553 (2004).
Dakhel, W. H., Latchininsky, A. V. & Jaronski, S. T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paranosema locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 10(4), 94–102 (2019).
Google Scholar
Guo, Y., An, Z. & Shi, W. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (IGR) (cascade) in rangelands in China. J. Econ. Entomol. 105(6), 1915–1920 (2012).
Google Scholar
Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19(4), 333–350 (1999).
Google Scholar
Larem, A., Fritsch, E., Undorf-Spahn, K., Kleespies, E. G. & Jehle, J. A. Interaction of Phthorimaea operculella granulovirus with a Nosema sp. microsporidium in larvae of Phthorimaea operculella. J. Invertebr. Pathol. 160, 76–86 (2019).
Google Scholar
Tokarev, Y. S., Grizanova, E. V., Ignatieva, A. N. & Dubovskiy, I. M. Greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) as a resistant model host for Nosema pyrausta (Microsporidia: Nosematidae). J. Invertebr. Pathol. 157, 1–3 (2018).
Google Scholar
Coombs, N. J., Gough, A. C. & Primrose, J. N. Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucleic Acids Res. 27, e12-I (1999).
Huang, W. F., Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet. Biol 41, 473–481 (2004).
Google Scholar
Karnovsky, M. J. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell. Biol. 27, 1A-149A (1965).
Google Scholar
Source: Ecology - nature.com