in

First record of a new microsporidium pathogenic to Gonipterus platensis in Brazil

  • 1.

    Simões, R. A., Reis, L. G., Bento, J. M., Solter, L. F. & Delalibera, I. Jr. Biological and behavioral parameters of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae) are altered by the pathogen Nosema sp. (Microsporidia: Nosematidae). Biol. Control 63, 164–171 (2012).

    Article 

    Google Scholar 

  • 2.

    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).

    Article 

    Google Scholar 

  • 3.

    Himler, A. G. et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by the fitness benefits and female bias. Science 332, 254–256 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Lu, M., Wingfield, M. J., Gillette, N. & Sun, J. H. Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion. Ecology 92, 2013–2019 (2011).

    Article 

    Google Scholar 

  • 5.

    Vilcinskas, A., Stoecker, K., Schmidtberg, H., Röhrich, C. R. & Vogel, H. Invasive harlequin ladybird carries biological weapons against native competitors. Science 340, 862–863 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Zhao, L. et al. A native fungal symbiont facilitates the prevalence and development of an invasive pathogen–native vector symbiosis. Ecology 94, 2817–2826 (2013).

    Article 

    Google Scholar 

  • 7.

    Solter, L. F., Becnel, J. J. & Vávra, J. Research methods for entomopathogenic microsporidia and other protists. Manual of Techniques in Invertebrate Pathology 329–371 (2012).

  • 8.

    Maddox, J. V. Protozoan diseases. Epizootiol. Insect Dis. 1, 417–452 (1987).

    Google Scholar 

  • 9.

    Latchininsky, A. V. & VanDyke, K. A. Grasshopper and locust control with poisoned baits: a renaissance of the old strategy?. Outlooks Pest Manag. 17, 105–111 (2006).

    Article 

    Google Scholar 

  • 10.

    Sweeney, A. W. & Becnel, J. J. Potential of microsporidia for the control of mosquitoes. Parasitol. Today. 7, 217–220 (1991).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Capella-Gutierrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47–52 (2012).

    Article 

    Google Scholar 

  • 12.

    Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Tooke, F. G. C. The Eucalyptus Snout beetle, Gonipterus scutellatus Gyll. A study of its ecology and control by biological means Union of South Africa, Department of Agriculture. Entomol. Mem. 3, 1–184 (1955).

    Google Scholar 

  • 14.

    Mapondera, T. S., Burgess, T., Matsuki, M. & Oberprieler, R. G. Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust. J. Entomol. 51, 175–188 (2012).

    Article 

    Google Scholar 

  • 15.

    Valente, C. et al. Economic outcome of classical biological control: a case study on the Eucalyptus snout beetle, Gonipterus platensis, and the parasitoid Anaphes nitens. Ecol Econ. 149, 40–47 (2018).

    Article 

    Google Scholar 

  • 16.

    Ansari, M. J., Al-Ghamdi, A., Nuru, A., Khan, K. A. & Alattal, Y. Geographical distribution and molecular detection of Nosema ceranae from indigenous honeybees of Saudi Arabia. Saudi J. Biol. Sci 24, 983–991 (2017).

    Article 

    Google Scholar 

  • 17.

    Ovcharenko, M., Świątek, P., Ironside, J. & Skalski, T. Orthosomella lipae sp. n. (Microsporidia) a parasite of the weevil, Liophloeus lentus Germar, 1824 (Coleoptera: Curculionidae). J. Invertebr. Pathol. 112, 33–40 (2013).

    Article 

    Google Scholar 

  • 18.

    Weiser, J. A new microsporidian from the bark beetle Pityokteines curvidens Germar (Coleoptera, Scolytidae) in Czechoslovakia. J. Invertebr. Pathol. 3, 324–329 (1961).

    Google Scholar 

  • 19.

    Malone, L. A. A new pathogen, Microsporidium itiiti n. sp. (Microsporida), from the Argentine Stem Weevil, Listronotus bonariensis (Coleoptera, Curculionidae). J. Protozool. 32, 535–541 (1985).

    Article 

    Google Scholar 

  • 20.

    Purrini, K. & Weiser, J. Ultrastructural study of the microsporidian Chytridiopsis typographi (Chytridiopsida: Microspora) infecting the bark beetle, Ips typographus (Scolytidae: Coleoptera), with new data on spore dimorphism. J. Invertebr. Pathol. 45, 66–74 (1985).

    Article 

    Google Scholar 

  • 21.

    Yaman, M., Radek, R., Aslan, I. & Erturk, O. Characteristic features of Nosema phyllotretae Weiser 1961, a microsporidian parasite of Phyllotreta atra (Coleoptera: Chrysomelidae) in Turkey. Zool. Stud. Taipei. 44, 368 (2005).

    Google Scholar 

  • 22.

    Zhu, F. et al. A new isolate of Nosema sp. (Microsporidia, Nosematidae) from Phyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China. Jour J. Invertebr. Pathol. 106, 339–342 (2011).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Andreadis, T. G., Takaoka, H., Otsuka, Y. & Vossbrinck, C. R. Morphological and molecular characterization of a microsporidian parasite, Takaokaspora nipponicus n. gen. n. sp. from the invasive rock pool mosquito, Ochlerotatus japonicus japonicus. J. Invertebr. Pathol. 114, 161–172 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Sapir, A. et al. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Front. Microbiol. 5, 43–52 (2014).

    Article 

    Google Scholar 

  • 25.

    Solter, L. F., Maddox, J. V. & McManus, M. L. Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J. Invertebr. Pathol. 69, 135–150 (1997).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Knell, J. D., Allen, G. E. & Hazard, E. I. Light and electron microscope study of Thelohania solenopsae n. sp. (Microsporida: Protozoa) in the red imported fire ant Solenopsis invict. J. Invertebr. Pathol. 29, 192–200 (1977).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Henry, J. E., & Oma, E. A. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. Microbial Control of Pests and Plant Diseases 1970–1980 (1981).

  • 28.

    Vávra, J. & Maddox, J. V. Methods in microsporidiology. In Biology of the Microsporidia 281–319 (Springer, Boston, 1976).

    Google Scholar 

  • 29.

    Simões, R. A., Feliciano, J. R., Solter, L. F. & Delalibera, I. Jr. Impacts of Nosema sp. (Microsporidia: Nosematidae) on the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). J. Invertebr. Pathol. 129, 7–12 (2015).

    Article 

    Google Scholar 

  • 30.

    Inglis, G. D., Lawrence, A. M. & Davis, F. M. Impact of a novel species of Nosema on the southwestern corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 96, 12–20 (2003).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Zheng, H. Q. et al. Spore loads may not be used alone as a direct indicator of the severity of Nosema ceranae infection in honey bees Apis mellifera (Hymenoptera: Apidae). J. Econ. Entomol. 107, 2037–2044 (2014).

    Article 

    Google Scholar 

  • 32.

    Goettel, M. S., Inglis, G. D. & Lacey, L. A. Manual of Techniques in Invertebrate Pathology (Academic Press, 2012).

    Google Scholar 

  • 33.

    Canning, E. U., Curry, A., Cheney, S., Lafranchi-Tristem, N. J., Haque, M. A. Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119, 273–286 (1999).

  • 34.

    Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J. Invertebr. Pathol. 83, 51–59 (2003).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Cai, S. F., Lu, X. M., Qiu, H. H., Li, M. Q. & Feng, Z. Z. Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J. Integr. Agric. 11, 1321–1326 (2012).

    Article 

    Google Scholar 

  • 36.

    Dong, S., Shen, Z., Xu, L. & Zhu, F. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia. Curr. Microbiol. 60, 30 (2010).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Becnel, J. J. & Andreadis, T. G. Microsporidia in insects. The microsporidia and microsporidiosis 447-501 (1999).

  • 38.

    Knell, R. J. & Webberley, K. M. Sexually transmitted diseases of insects: Distribution, evolution, ecology and host behaviour. Biol. Rev. 79, 557–581 (2004). (PERMANECE)

  • 39.

    Bell, H. A., Down, R. E., Kirkbride‐Smith, A. E. & Edwards, J. P. Effect of microsporidian infection in Lacanobia oleracea (Lep., Noctuidae) on prey selection and consumption by the spined soldier bug Podisus maculiventris (Het., Pentatomidae). J. Appl. Entomol. 128(8), 548–553 (2004).

  • 40.

    Dakhel, W. H., Latchininsky, A. V. & Jaronski, S. T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paranosema locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 10(4), 94–102 (2019).

    Article 

    Google Scholar 

  • 41.

    Guo, Y., An, Z. & Shi, W. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (IGR) (cascade) in rangelands in China. J. Econ. Entomol. 105(6), 1915–1920 (2012).

    Article 

    Google Scholar 

  • 42.

    Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19(4), 333–350 (1999).

    Article 

    Google Scholar 

  • 43.

    Larem, A., Fritsch, E., Undorf-Spahn, K., Kleespies, E. G. & Jehle, J. A. Interaction of Phthorimaea operculella granulovirus with a Nosema sp. microsporidium in larvae of Phthorimaea operculella. J. Invertebr. Pathol. 160, 76–86 (2019).

    Article 

    Google Scholar 

  • 44.

    Tokarev, Y. S., Grizanova, E. V., Ignatieva, A. N. & Dubovskiy, I. M. Greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) as a resistant model host for Nosema pyrausta (Microsporidia: Nosematidae). J. Invertebr. Pathol. 157, 1–3 (2018).

    Article 

    Google Scholar 

  • 45.

    Coombs, N. J., Gough, A. C. & Primrose, J. N. Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucleic Acids Res. 27, e12-I (1999).

  • 46.

    Huang, W. F., Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet. Biol 41, 473–481 (2004).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Karnovsky, M. J. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell. Biol. 27, 1A-149A (1965).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT students and alumni “hack” Hong Kong Kowloon East

    Coexistence holes fill a gap in community assembly theory