in

First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

[adace-ad id="91168"]
  • 1.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    PubMed 

    Google Scholar 

  • 2.

    Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. 26, 838–857 (2016).

    Google Scholar 

  • 3.

    Deinet, S. et al. The Living Planet Index (LPI) for Migratory Freshwater Fish—Technical Report. (World Fish Migration Foundation, 2020).

  • 4.

    Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).

    Google Scholar 

  • 5.

    Lennox, R. J. et al. One hundred pressing questions on the future of global fish migration science, conservation, and policy. Front. Ecol. Evol. 7, 286 (2019).

    ADS 

    Google Scholar 

  • 6.

    Jellyman, D.J. An enigma: how can freshwater eels (Anguilla spp.) be such a successful genus yet be universally
    threatened? Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09658-8 (2021).

  • 7.

    Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660–1660 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Chow, S. et al. Light-sensitive vertical migration of the Japanese eel Anguilla japonica revealed by real-time tracking and its utilization for geolocation. PLoS ONE 10, e0121801 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199–219 (2018).

    Google Scholar 

  • 12.

    Jellyman, D. & Tsukamoto, K. First use of archival transmitters to track migrating freshwater eels Anguilla dieffenbachii at sea. Mar. Ecol. Prog. Ser. 233, 207–215 (2002).

    ADS 

    Google Scholar 

  • 13.

    Watanabe, S. et al. Reexamination of the spawning migration of Anguilla dieffenbachii in relation to water temperature and the lunar cycle. N. Z. J. Mar. Freshw. Res. 54, 131–147 (2020).

    Google Scholar 

  • 14.

    McNiven, I. et al. Phased redevelopment of an ancient Gunditjmara fish trap over the past 800 years: Muldoons Trap Complex, Lake Condah, southwestern Victoria. Aust. Archaeol. 81, 44–58 (2015).

    Google Scholar 

  • 15.

    Rose, D., Bell, D. & Crook, D. A. Restoring habitat and cultural practice in Australia’s oldest and largest traditional aquaculture system. Rev. Fish Biol. Fish. 26, 589–600 (2016).

    Google Scholar 

  • 16.

    Pike, C., Crook, V. & Gollock, M. Anguilla australis (errata version published in 2019). The IUCN Red List of Threatened Species 2019: e.T195502A154801652 (2019). https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T195502A154801652.en. Downloaded on 14 January 2020.

  • 17.

    Miller, M. J. et al. Review of Ocean-Atmospheric Factors in the Atlantic and Pacific Oceans Influencing Spawning and Recruitment of Anguillid Eels. 231–249 (American Fisheries Society Symposium, 2009).

  • 18.

    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).

    Google Scholar 

  • 19.

    Schmidt, J. The freshwater eels of Australia with some remarks on the shortfin species of Anguilla. Rec. Aust. Mus. 16, 179–210 (1928).

    Google Scholar 

  • 20.

    Jespersen, P. Indo-Pacific leptocephaids of the genus Anguilla. Systematic and biological studies. Dana-Rep. Carlsberg Found. 22, 1–128 (1942).

    Google Scholar 

  • 21.

    Castle, P. H. J. Anguillid leptocephali in the southwest Pacific. Zool. Pubs Vic. Univ. Wellingt. 33, 1–14 (1963).

    Google Scholar 

  • 22.

    Aoyama, J. et al. Distribution and dispersal of anguillid leptocephali in the western Pacific Ocean revealed by molecular analysis. Mar. Ecol. Prog. Ser. 188, 193–200 (1999).

    ADS 

    Google Scholar 

  • 23.

    Kuroki, M. et al. Distribution of anguillid leptocephali and possible spawning areas in the South Pacific Ocean. Progr. Oceanogr. 180, 102234 (2020).

    Google Scholar 

  • 24.

    Todd, P. R. Size and age of migrating New Zealand freshwater eels (Anguilla spp.). N. Z. J. Mar. Freshw. Res. 14, 283–293 (1980).

    Google Scholar 

  • 25.

    Sloane, R. Preliminary observations of migrating adult freshwater eels (Anguilla australis australis Richardson) in Tasmania. Mar. Freshw. Res. 35, 471–476 (1984).

    ADS 

    Google Scholar 

  • 26.

    Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelemetry 1, 1–13 (2013).

    Google Scholar 

  • 27.

    Kuroki, M. et al. Distribution and early life-history characteristics of anguillid leptocephali in the western South Pacific. Mar. Freshw. Res. 59, 1035–1047 (2008).

    Google Scholar 

  • 28.

    Righton, D. et al. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation. J. Fish Biol. 81, 365–386 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Westerberg, H. Marine migratory behavior of the European silver eel. In Physiology and Ecology of Fish Migration (eds H. Ueda, H. & Tsukamoto, K.) 80–103 (CRC Press, 2013).

  • 30.

    Chang, Y.-L.K., Olmo, G. D. & Schabetsberger, R. Tracking the marine migration routes of South Pacific silver eels. Mar. Ecol. Prog. Ser. 646, 1–12 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Westerberg, H., Sjöberg, N., Lagenfelt, I., Aarestrup, K. & Righton, D. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).

    ADS 

    Google Scholar 

  • 32.

    Ridgway, K. & Godfrey, J. Seasonal cycle of the East Australian current. J. Geophys. Res. Oceans 102, 22921–22936 (1997).

    ADS 

    Google Scholar 

  • 33.

    Ridgway, K. & Dunn, J. Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr. 56, 189–222 (2003).

    ADS 

    Google Scholar 

  • 34.

    Westin, L. Migration failure in stocked eels Anguilla anguilla. Mar. Ecol. Prog. Ser. 254, 307–311 (2003).

    ADS 

    Google Scholar 

  • 35.

    Nordeng, H. A pheromone hypothesis for homeward migration in anadromous salmonids. Oikos 28, 155–159 (1977).

    CAS 

    Google Scholar 

  • 36.

    Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242 e3233 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Béguer-Pon, M. et al. Shark predation on migrating adult American eels (Anguilla rostrata) in the Gulf of St. Lawrence. PLoS One 7, e46830 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Wahlberg, M. et al. Evidence of marine mammal predation of the European eel (Anguilla anguilla L.) on its marine migration. Deep Sea Res. A 86, 32–38 (2014).

    Google Scholar 

  • 39.

    Béguer-Pon, M. et al. Large-scale migration patterns of silver American eels from the St. Lawrence River to the Gulf of St. Lawrence using acoustic telemetry. Can. J. Fish. Aquat. Sci. 71, 1579–1592 (2014).

    Google Scholar 

  • 40.

    Strøm, J. F. et al. Ocean predation and mortality of adult Atlantic salmon. Sci. Rep. 9, 1–11 (2019).

    ADS 

    Google Scholar 

  • 41.

    Hays, G. C. Tracking animals to their death. J. Anim. Ecol. 83, 5–6 (2014).

    PubMed 

    Google Scholar 

  • 42.

    Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Schabetsberger, R. et al. Oceanic migration behaviour of tropical Pacific eels from Vanuatu. Mar. Ecol. Prog. Ser. 475, 177–190 (2013).

    ADS 

    Google Scholar 

  • 44.

    Schabetsberger, R. et al. Oceanic migration behaviour of Pacific eels from Samoa. Fish. Manag. Ecol. 26, 53–56 (2018).

    Google Scholar 

  • 45.

    Béguer-Pon, M., Shan, S., Castonguay, M. & Dodson, J. J. Behavioural variability in the vertical and horizontal oceanic migrations of silver American eels. Mar. Ecol. Prog. Ser. 585, 123–142 (2017).

    ADS 

    Google Scholar 

  • 46.

    Wu, K. et al. Illumination-dependent diel-vertical migration behavior in the genus Anguilla. J. Fish. Soc. Taiwan 45, 225–232 (2018).

    Google Scholar 

  • 47.

    Tesch, F. & Rohlf, N. Migration from continental waters to the spawning grounds. In Eel Biology (eds. Aida, K., Tsukamoto, K., Yamauchi, K.) 223–234. (Springer, 2003).

  • 48.

    Sébert, P., Scaion, D. & Belhomme, M. High hydrostatic pressure improves the swimming efficiency of European migrating silver eel. Respir. Physiol. Neurobiol. 165, 112–114 (2009).

    PubMed 

    Google Scholar 

  • 49.

    Jellyman, D. & Tsukamoto, K. Vertical migrations may control maturation in migrating female Anguilla dieffenbachii. Mar. Ecol. Prog. Ser. 404, 241–247 (2010).

    ADS 

    Google Scholar 

  • 50.

    Benoit-Bird, K. J., Dahood, A. D. & Würsig, B. Using active acoustics to compare lunar effects on predator–prey behavior in two marine mammal species. Mar. Ecol. Prog. Ser. 395, 119–135 (2009).

    ADS 

    Google Scholar 

  • 51.

    Owen, K., Andrews, R. D., Baird, R. W., Schorr, G. S. & Webster, D. L. Lunar cycles influence the diving behavior and habitat use of short-finned pilot whales around the main Hawaiian Islands. Mar. Ecol. Prog. Ser. 629, 193–206 (2019).

    ADS 

    Google Scholar 

  • 52.

    Crook, D. A. et al. Environmental cues and extended estuarine residence in seaward migrating eels (Anguilla australis). Freshw. Biol. 59, 1710–1720 (2014).

    Google Scholar 

  • 53.

    Musyl, M. K. et al. Performance of pop-up satellite archival tags. Mar. Ecol. Prog. Ser. 433, 1–28 (2011).

    ADS 

    Google Scholar 

  • 54.

    Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152, 877–894 (2007).

    Google Scholar 

  • 55.

    Gill, A., Bartlett, M. & Thomsen, F. Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 81, 664–695 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Aarestrup, K. et al. Survival and progression rates of large European silver eel Anguilla anguilla in late freshwater and early marine phases. Aquat. Biol. 9, 263–270 (2010).

    Google Scholar 

  • 57.

    Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).

    PubMed 

    Google Scholar 

  • 58.

    Westerberg, H. & Wickström, H. Stock assessment of eels in the Baltic: Reconciling survey estimates to achieve quantitative analysis. ICES J. Mar. Sci. 73, 75–83 (2016).

    Google Scholar 

  • 59.

    Kaifu, K. Challenges in assessments of Japanese eel stock. Mar. Policy 102, 1–4 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature

    Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods