in

Fish heating tolerance scales similarly across individual physiology and populations

  • 1.

    Hutchinson, G. E. Cold spring harbor symposium on quantitative biology. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  • 2.

    Chown, S., Gaston, K. & Robinson, D. Macrophysiology: large‐scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).

    Article  Google Scholar 

  • 3.

    Spicer, J. I., Morley, S. A. & Bozinovic, F. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen. Philos. Trans. R. Soc. B 374 (2019).

  • 4.

    Chown, S. L. & Gaston, K. J. Macrophysiology—progress and prospects. Funct. Ecol. 30, 330–344 (2016).

    Article  Google Scholar 

  • 5.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  • 6.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).

    CAS  Article  Google Scholar 

  • 7.

    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    Article  Google Scholar 

  • 8.

    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).

    Article  Google Scholar 

  • 9.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).

    Article  Google Scholar 

  • 10.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111, 5610–5615 (2014).

    CAS  Article  Google Scholar 

  • 11.

    Araujo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  Google Scholar 

  • 12.

    Payne, N. L. & Smith, J. A. An alternative explanation for global trends in thermal tolerance. Ecol. Lett. 20, 70–77 (2017).

    Article  Google Scholar 

  • 13.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    Article  Google Scholar 

  • 14.

    Rezende, E. L. & Bozinovic, F. Thermal performance across levels of biological organization. Philos. Trans. R. Soc. B 374, 20180549 (2019).

    CAS  Article  Google Scholar 

  • 15.

    Barnes, D. K., Peck, L. S. & Morley, S. A. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob. Change Biol. 16, 3164–3169 (2010).

    Article  Google Scholar 

  • 16.

    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).

    Article  Google Scholar 

  • 17.

    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).

    Article  Google Scholar 

  • 18.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    Article  Google Scholar 

  • 19.

    Buckley, L. B. et al. Can mechanism inform species’ distribution models? Ecol. Lett. 13, 1041–1054 (2010).

    Article  Google Scholar 

  • 20.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 21.

    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).

    Article  Google Scholar 

  • 22.

    Richard, J., Morley, S. A., Thorne, M. A. & Peck, L. S. Estimating long-term survival temperatures at the assemblage level in the marine environment: towards macrophysiology. PLoS ONE 7, e34655 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    CAS  Article  Google Scholar 

  • 25.

    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    Article  Google Scholar 

  • 26.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  • 27.

    Martin, T. L. & Huey, R. B. Why “Suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).

    Article  Google Scholar 

  • 28.

    Pörtner, H.-O. et al. Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim. Res. 37, 253–270 (2008).

    Article  Google Scholar 

  • 29.

    Sylvestre, E.-L., Lapointe, D., Dutil, J.-D. & Guderley, H. Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 177, 447–460 (2007).

    Article  Google Scholar 

  • 30.

    Claireaux, G., Webber, D., Lagardère, J.-P. & Kerr, S. Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J. Sea Res. 44, 257–265 (2000).

    Article  Google Scholar 

  • 31.

    Björnsson, B. & Steinarsson, A. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59, 494–502 (2002).

    Article  Google Scholar 

  • 32.

    Morley, S., Peck, L., Sunday, J., Heiser, S. & Bates, A. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).

    Article  Google Scholar 

  • 33.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    Article  Google Scholar 

  • 34.

    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 326, 119–157 (1989).

    CAS  Google Scholar 

  • 35.

    Orme, D., Freckleton, R., Thomas, G., Petzoldt, T. & Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).

    Google Scholar 

  • 36.

    Halsey, L. G., Butler, P. J. & Blackburn, T. M. A phylogenetic analysis of the allometry of diving. Am. Nat. 167, 276–287 (2006).

    Article  Google Scholar 

  • 37.

    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Article  Google Scholar 

  • 38.

    Freckleton, R. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).

    CAS  Article  Google Scholar 

  • 39.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture