in

Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs

[adace-ad id="91168"]
  • 1.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol. Conserv. 128, 231–240 (2006).

    Article 

    Google Scholar 

  • 5.

    Opdam, P. & Wascher, D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004).

    Article 

    Google Scholar 

  • 6.

    Broadhurst, L. M. et al. Seed supply for broadscale restoration: maximizing evolutionary potential. Evol. Appl. 1, 587–597 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D. & Yates, E. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Conserv. 143, 18–27 (2010).

    Article 

    Google Scholar 

  • 8.

    Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Evans, B. J. et al. Speciation over the edge: gene flow among non-human primate species across a formidable biogeographic barrier. R. Soc. Open Sci. 4, 170351 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol. Appl. 4, 709–725 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Pavlova, A. et al. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol. Appl. 10, 531–550 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article 

    Google Scholar 

  • 13.

    Rajpurohit, S. & Nedved, O. Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. J. Therm. Biol. 38, 345–354 (2013).

    Article 

    Google Scholar 

  • 14.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Article 

    Google Scholar 

  • 15.

    Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C. & Franks, S. J. Draining the swamp hypothesis: little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.02.004 (2021).

  • 16.

    Kelly, E. & Phillips, B. L. Targeted gene flow for conservation. Conserv. Biol. 30, 259–267 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Macdonald, S. L., Llewelyn, J., Moritz, C. & Phillips, B. L. Peripheral isolates as sources of adaptive diversity under climate change. Front. Ecol. Evol. 5, 88 (2017).

    Article 

    Google Scholar 

  • 18.

    Edmands, S. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16, 463–475 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Edmands, S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Schierup, M. H. & Christiansen, F. B. Inbreeding depression and outbreeding depression in plants. Heredity 77, 461–468 (1996).

    Article 

    Google Scholar 

  • 23.

    Bjorkman, A. D., Vellend, M., Frei, E. R. & Henry, G. H. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Glob. Change Biol. 23, 1540–1551 (2017).

    Article 

    Google Scholar 

  • 24.

    Frankham, R. Where are we in conservation genetics and where do we need to go? Conserv. Genet. 11, 661–663 (2010).

    Article 

    Google Scholar 

  • 25.

    Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Le Cam, S., Perrier, C., Besnard, A.-L., Bernatchez, L. & Evanno, G. Genetic and phenotypic changes in an Atlantic salmon population supplemented with non-local individuals: a longitudinal study over 21 years. Proc. Roy. Soc. B-Biol. Sci. 282, 20142765 (2015).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Fitzpatrick, S. W. et al. Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evol. Appl. 9, 879–891 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Robinson, Z. L. et al. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 26, 4418–4433 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Byrne, P. G. & Silla, A. J. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2, e194 (2020).

  • 31.

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Urban, M. C., Richardson, J. L. & Freidenfelds, N. A. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol. Appl. 7, 88–103 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).

    Article 

    Google Scholar 

  • 34.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Eads, A., Mitchell, N. J. & Evans, J. Patterns of genetic variation in desiccation tolerance in embryos of the terrestrial-breeding frog, Pseudophryne guentheri. Evolution 66, 2865–2877 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Cummins, D., Kennington, W. J., Rudin‐Bitterli, T. & Mitchell, N. J. A genome‐wide search for local adaptation in a terrestrial‐breeding frog reveals vulnerability to climate change. Glob. Change Biol. 25, 3151–3162 (2019).

    Article 

    Google Scholar 

  • 40.

    Bureau of Meteorology. Climate Data Online, http://www.bom.gov.au/climate/data/ (2020).

  • 41.

    Turelli, M. & Moyle, L. C. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176, 1059–1088 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Dobzhansky, T. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21, 113 (1936).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Muller, H. J. Isolating mechanisms, evolution and temperature. Biol. Symp. 6, 71–125 (1942).

    Google Scholar 

  • 44.

    Orr, H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Arntzen, J. W., Jehle, R., Bardakci, F., Burke, T. & Wallis, G. P. Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Trituris cristatus and Trituris marmoratus). Evolution 63, 1191–1202 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Lee-Yaw, J. A., Jacobs, C. G. C. & Irwin, D. E. Individual performance in relation to cytonuclear discordance in a northern contact zone between long-toed salamander (Ambystoma macrodactylum) lineages. Mol. Ecol. 23, 4590–4602 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Sanchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).

    Article 

    Google Scholar 

  • 48.

    Sasa, M. M., Chippindale, P. T. & Johnson, N. A. Patterns of postzygotic isolation in frogs. Evolution 52, 1811–1820 (1998).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Sánchez‐Guillén, R., Córdoba‐Aguilar, A., Cordero‐Rivera, A. & Wellenreuther, M. Genetic divergence predicts reproductive isolation in damselflies. J. Evol. Biol. 27, 76–87 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 50.

    Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Kelemen, L. & Moritz, C. Comparative phylogeography of a sibling pair of rainforest Drosophila species (Drosophila serrata and D. birchii). Evolution 53, 1306–1311 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Hercus, M. J. & Hoffmann, A. A. Desiccation resistance in interspecific Drosophila crosses: genetic interactions and trait correlations. Genetics 151, 1493–1502 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Rudin-Bitterli, T. S., Mitchell, N. J. & Evans, J. P. Extensive geographical variation in testes size and ejaculate traits in a terrestrial-breeding frog. Biol. Lett. 16, 20200411 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Shaver, J., Barch, S. & Shivers, C. Tissue-specificity of frog egg-jelly antigens. J. Exp. Zool. 151, 95–103 (1962).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Bradford, D. F. & Seymour, R. S. Influence of environmental PO2 on embryonic oxygen consumption, rate of development, and hatching in the frog, Pseudophryne bibroni. Physiol. Zool. 61, 475–482 (1988).

    Article 

    Google Scholar 

  • 56.

    Seymour, R. S., Geiser, F. & Bradford, D. F. Metabolic cost of development in terrestrial frog eggs (Pseudophryne bibronii). Physiol. Zool. 64, 688–696 (1991).

    Article 

    Google Scholar 

  • 57.

    Warkentin, K. M. Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc. Natl Acad. Sci. USA 92, 3507–3510 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Webb, P. Effect of body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Can. J. Fish. Aquat. Sci. 43, 763–771 (1986).

    Article 

    Google Scholar 

  • 59.

    Watkins, T. B. Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog, Pseudacris regilla. Physiol. Zool. 69, 154–167 (1996).

    Article 

    Google Scholar 

  • 60.

    Wilson, R. & Franklin, C. Thermal acclimation of locomotor performance in tadpoles of the frog Limnodynastes peronii. J. Comp. Physiol. B 169, 445–451 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Teplitsky, C. et al. Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole. J. Evol. Biol. 18, 180–190 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Walker, J., Ghalambor, C., Griset, O., McKenney, D. & Reznick, D. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).

    Article 

    Google Scholar 

  • 63.

    Langerhans, R. B. Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol. Lett. 5, 488–491 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Plowman, M. C., Grbac-lvankovic, S., Martin, J., Hopfer, S. M. & Sunderman, F. W. Jr Malformations persist after metamorphosis of Xenopus laevis tadpoles exposed to Ni2+, Co2+, or Cd2+ in FETAX assays. Teratog. Carcinog. Mutagen. 14, 135–144 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. Vol. 1 (Sinauer Sunderland, MA, 1998).

  • 66.

    Remington, D. L. & O’Malley, D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155, 337–348 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Lynch, M. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45, 622–629 (1991).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Armbruster, P., Bradshaw, W. E., Steiner, A. L. & Holzapfel, C. M. Evolutionary responses to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83, 509–519 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Marr, A. B., Keller, L. F. & Arcese, P. Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution 56, 131–142 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Marshall, T. & Spalton, J. Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Anim. Conserv. 3, 241–248 (2000).

    Article 

    Google Scholar 

  • 71.

    Rudin-Bitterli, T. S., Mitchell, N. J. & Evans, J. P. Environmental stress increases the magnitude of nonadditive genetic variation in offspring fitness in the frog Crinia georgiana. Am. Nat. 192, 461–478 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Drummond, E., Short, E. & Clancy, D. Mitonuclear gene X environment effects on lifespan and health: How common, how big? Mitochondrion 49, 12–18 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Morales, H. E. et al. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat. Ecol. Evol. 2, 1258–1267 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Schmid, M., Evans, B. J. & Bogart, J. P. Polyploidy in amphibia. Cytogenet. Genome Res. 145, 315–330 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Silla, A. J. Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage. Reprod. Fertil. Dev. 25, 1134–1141 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Phillip, G. B. & Keogh, J. S. Extreme sequential polyandry insures against nest failure in a frog. Proc. Roy. Soc. B-Biol. Sci. 276, 115–120 (2009).

    Article 

    Google Scholar 

  • 77.

    Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Scheele, B. C. et al. Interventions for reducing extinction risk in chytridiomycosis‐threatened amphibians. Conserv. Biol. 28, 1195–1205 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Osborne, W. S. & Norman, J. A. Conservation genetics of Corroboree frogs, Psuedophryne corroboree (Anura: Myobatrachidae): population subdivision and genetic divergence. Aust. J. Zool. 39, 285–297 (1991).

    Article 

    Google Scholar 

  • 80.

    Browne, R. K. et al. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133, 187–200 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Silla, A. J. & Byrne, P. G. Hormone-induced ovulation and artificial fertilisation in four terrestrial-breeding anurans. Reprod. Fertil. Dev. https://doi.org/10.1071/RD20243 (2021).

  • 82.

    O’Brien, D. M., Keogh, J. S., Silla, A. J. & Byrne, P. G. Female choice for related males in wild red-backed toadlets (Pseudophryne coriacea). Behav. Ecol. 30, 928–937 (2019).

    Article 

    Google Scholar 

  • 83.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • 84.

    Anstis, M. Tadpoles and Frogs of Australia. (New Holland Publishers, 2013).

  • 85.

    CSIRO, and Bureau of Meteorology. State of the Climate 2018 (CSIRO Publishing, 2018).

  • 86.

    Andrich, M. A. & Imberger, J. The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol. 20, 549–563 (2013).

    Article 

    Google Scholar 

  • 87.

    Raut, B. A., Jakob, C. & Reeder, M. J. Rainfall changes over southwestern Australia and their relationship to the Southern Annular Mode and ENSO. J. Clim. 27, 5801–5814 (2014).

    Article 

    Google Scholar 

  • 88.

    Arnold, G. in Greenhouse: Planning for Climate Change (ed. Pearman, G. I.) 375–386 (CSIRO Publishing, 1988).

  • 89.

    Hobbs, R. J. Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biol. Conserv. 64, 193–201 (1993).

    Article 

    Google Scholar 

  • 90.

    Silla, A. J. Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Gϋnther’s toadlet, Pseudophryne guentheri. Reprod. Biol. Endocrinol. 9, 68 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Lymbery, R. A., Kennington, W. J. & Evans, J. P. Multivariate sexual selection on ejaculate traits under sperm competition. Am. Nat. 192, 94–104 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Browne, R. K., Clulow, J. & Mahony, M. Short-term storage of cane toad (Bufo marinus) gametes. Reproduction 121, 167–173 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Kouba, A. J., Vance, C. K., Frommeyer, M. A. & Roth, T. L. Structural and functional aspects of Bufo americanus spermatozoa: effects of inactivation and reactivation. J. Exp. Zool. A. Comp. Exp. Biol. 295, 172–182 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with Image. J. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  • 95.

    Noldus, L. P., Spink, A. J. & Tegelenbosch, R. A. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 96.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).

  • 97.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Data sets. https://doi.org/10.5061/dryad.6m905qg09 (2021).


  • Source: Ecology - nature.com

    Soil organic matter and clay zeta potential influence aggregation of a clayey red soil (Ultisol) under long-term fertilization

    How marsh grass protects shorelines