in

Foraging niche partitioning in sympatric seabird populations

  • 1.

    Gause, G. F. Experimental populations of microscopic organisms. Ecology 18, 173–179 (1937).

    Google Scholar 

  • 2.

    DeBach, P. & Sundby, R. A. Competitive displacement between ecological homologues. Hilgardia 34, 105–166 (1963).

    Article  Google Scholar 

  • 3.

    Johnson, C. A. & Bronstein, J. L. Coexistence and competitive exclusion in mutualism. Ecology 100, e02708 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Hutchinson, G. E. Concluding remarks Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1958).

    Article  Google Scholar 

  • 6.

    MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).

    Article  Google Scholar 

  • 7.

    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evolution 71, 1205–1221 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Whittaker, R. H., Levin, S. A. & Root, R. B. Niche, Habitat, and Ecotope. Am. Nat. 107, 321–338 (1973).

    Article  Google Scholar 

  • 9.

    Wilson, R. P. Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Funct. Ecol. 24, 646–657 (2010).

    Article  Google Scholar 

  • 10.

    Berendse, F. Interspecific competition and niche differentiation between Plantago Ianceolata and Anthoxanthum odoratum in a natural hayfield. J. Ecol. 71, 379–390 (1983).

    Article  Google Scholar 

  • 11.

    Peterson, A. T. & Holt, R. D. Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol. Lett. 6, 774–782 (2003).

    Article  Google Scholar 

  • 12.

    Preez, B., Purdon, J., Trethowan, P., Macdonald, D. W. & Loveridge, A. J. Dietary niche differentiation facilitates coexistence of two large carnivores. J. Zool. 302, 149–156 (2017).

    Article  Google Scholar 

  • 13.

    Pratte, I., Robertson, G. J. & Mallory, M. L. Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar. Ecol. Prog. Ser. 572, 243–254 (2017).

    ADS  Article  Google Scholar 

  • 14.

    Cody, M. L. Coexistence, coevolution and convergent evolution in seabird communities. Ecology 54, 31–44 (1973).

    Article  Google Scholar 

  • 15.

    Hjernquist, M. B., Hjernquist, M., Hjernquist, B. & Thuman Hjernquist, K. A. Common Guillemot Uria aalge differentiate their niche to coexist with colonizing Great Cormorants Phalacrocorax carbo. Atlantic Seabird 7, 83–89 (2005).

    Google Scholar 

  • 16.

    Gaston, A. J. Seabirds: A Natural History (Yale University Press, New Haven, 2004).

    Google Scholar 

  • 17.

    Frere, E., Quintana, F., Gandini, P. & Wilson, R. P. Foraging behaviour and habitat partitioning of two sympatric cormorants in Patagonia, Argentina. Ibis 150, 558–564 (2008).

    Article  Google Scholar 

  • 18.

    Linnebjerg, J. F., Reuleaux, A., Mouritsen, K. N. & Frederiksen, M. Foraging ecology of three sympatric breeding alcids in a declining colony in southwest Greenland. Waterbirds 38, 143–152 (2015).

    Article  Google Scholar 

  • 19.

    Symons, S. C. Ecological Segregation Between Two Closely Related Species: Exploring Atlantic Puffin and Razorbill Foraging Hotspots (M. Sc. thesis, University of New Brunswick) (2018).

  • 20.

    Jenkins, E. J. & Davoren, G. K. Seabird species-and assemblage-level isotopic niche shifts associated with changing prey availability during breeding in coastal Newfoundland. Ibis https://doi.org/10.1111/ibi.12873 (2020).

    Article  Google Scholar 

  • 21.

    Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).

    Google Scholar 

  • 22.

    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).

    ADS  Article  Google Scholar 

  • 23.

    Elliott, K. H. et al. Central-place foraging in an Arctic seabird provides evidence for Storer-Ashmole’s halo. Auk 126, 613–625 (2009).

    Article  Google Scholar 

  • 24.

    Wakefield, E. D. et al. Space partitioning without territoriality in gannets. Science 341, 68–70 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Linnebjerg, J. F. et al. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8, e72987 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Masello, J. F. et al. Diving seabirds share foraging space and time within and among species. Ecosphere 1, 1–28 (2010).

    Article  Google Scholar 

  • 27.

    Hinke, J. T. et al. Spatial and isotopic niche partitioning during winter in chindstrap and Adélie penguins from the South Shetland Islands. Ecosphere 6, 1–32 (2015).

    Article  Google Scholar 

  • 28.

    Gulka, J., Ronconi, R. A. & Davoren, G. K. Spatial segregation contrasting dietary overlap: niche partitioning of two sympatric alcids during shifting resource availability. Mar. Biol. 166, 155 (2019).

    Article  Google Scholar 

  • 29.

    Ricklefs, R. E. & White, S. C. Growth and energetics of chicks of the Sooty Tern (Sterna fuscata) and Common Tern (S. hirundo). Auk 98, 361–378 (1981).

    Google Scholar 

  • 30.

    Lance, M. M. & Thompson, C. W. Overlap in diets and foraging of Common Murres and Rhinoceros Auklets after the breeding season. Auk 122, 887–901 (2005).

    Article  Google Scholar 

  • 31.

    Maynard, L. D. & Davoren, G. K. Inter-colony and interspecific differences in the isotopic niche of two sympatric gull species in Newfoundland. Mar. Ornithol. 48, 103–109 (2020).

    Google Scholar 

  • 32.

    Thaxter, C. B. et al. Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills. J. Exp. Biol. 213, 1018–1025 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Thaxter, C. B. et al. Modelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators. PLoS ONE 8, e79915 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Shoji, A., Aris-Brosou, S. & Elliott, K. H. Physiological constraints and dive behavior scale in tandem with body mass in auks: A comparative analysis. Comp. Biochem. Physiol. A 196, 54–60 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Guigueno, M. F., Shoji, A., Elliott, K. H. & Aris-Brosou, S. Flight costs in volant vertebrates: A phylogenetically-controlled meta-analysis of birds and bats. Comp. Biochem. Physiol. A 235, 193–201 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Robertson, G. S., Bolton, M. & Monaghan, P. Influence of diet and foraging strategy on reproductive success in two morphologically similar sympatric seabirds. Bird Study 63, 316–329 (2016).

    Article  Google Scholar 

  • 37.

    Gaston, A. J. & Jones, I. L. The Auks: Alcidae (Oxford University Press, USA, 1998).

    Google Scholar 

  • 38.

    Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. Ohio State Univ. Press Columbus 2, 155–177 (1979).

    Google Scholar 

  • 39.

    Rail, J. F. & Cotter, R. C. Seventeenth census of seabird populations in the sanctuaries of the North Shore of the Gulf of St. Lawrence, 2010. Can. Field-Nat. 121, 287–294 (2015).

    Article  Google Scholar 

  • 40.

    Lavoie, R. A., Rail, J. F. & Lean, D. R. Diet composition of seabirds from Corossol Island, Canada, using direct dietary and stable isotope analyses. Waterbirds 35, 402–419 (2012).

    Article  Google Scholar 

  • 41.

    Elliott, K. H. et al. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc. Natl. Acad. Sci. USA 110, 9380–9384 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Croll, D. A., Gaston, A. J., Burger, A. E. & Konnoff, D. Foraging behavior and physiological adaptation for diving in Thick-billed Murres. Ecology 73, 344–356 (1992).

    Article  Google Scholar 

  • 43.

    Thaxter, C. B. et al. Sex-specific food provisioning in a monomorphic seabird, the common guillemot Uria aalge: nest defence, foraging efficiency or parental effort?. J. Avian Biol. 40, 75–84 (2009).

    Article  Google Scholar 

  • 44.

    Gremillet, D. & Boulinier, T. Spatial ecology and conservation of seabirds facing global climate change a review. Mar. Ecol. Prog. Ser. 391, 121–137 (2009).

    ADS  Article  Google Scholar 

  • 45.

    Domalik, A. D., Hipfner, J. M., Studholme, K. R., Crossin, G. T. & Green, D. J. At-sea distribution and fine-scale habitat use patterns of zooplanktivorous Cassin’s auklets during the chick-rearing period. Mar. Biol. 165, 177 (2018).

    Article  Google Scholar 

  • 46.

    Lack, D. Ecological Isolation in Birds (Blackwell, Oxford, 1971).

    Google Scholar 

  • 47.

    Wanless, S., Harris, M. P. & Morris, J. A. A comparison of feeding areas used by individual Common Murres (Uria aalge), Razorbills (Alca torda) and an Atlantic Puffin (Fratercula arctica) during the breeding season. Colonial Waterbirds 13, 16–24 (1990).

    Article  Google Scholar 

  • 48.

    Paredes, R., Jones, I. L., Boness, D. J., Tremblay, Y. & Renner, M. Sex-specific differences in diving behaviour of two sympatric Alcini species: thick-billed murres and razorbills. Can. J. Zool. 86, 610–622 (2008).

    Article  Google Scholar 

  • 49.

    Kotzerka, J., Garthe, S. & Hatch, S. A. GPS tracking devices reveal foraging strategies of Black-legged Kittiwakes. J. Ornithol. 151, 459–467 (2009).

    Article  Google Scholar 

  • 50.

    John, M. A. S., MacDonald, J. S., Harrison, P. J., Beamish, R. J. & Choromanski, E. The Fraser River plume: some preliminary observations on the distribution of juvenile salmon, herring, and their prey. Fish. Oceanogr. 1, 153–162 (1992).

    Article  Google Scholar 

  • 51.

    Phillips, E. M., Horne, J. K., Adams, J. & Zamon, J. E. Selective occupancy of a persistent yet variable coastal river plume by two seabird species. Mar. Ecol. Prog. Ser. 594, 245–261 (2018).

    ADS  Article  Google Scholar 

  • 52.

    Shoji, A. et al. Foraging behaviour of sympatric razorbills and puffins. Mar. Ecol. Prog. Ser. 520, 257–267 (2015).

    ADS  Article  Google Scholar 

  • 53.

    Chimienti, M. et al. Taking movement data to new depths: inferring prey availability and patch profitability from seabird foraging behavior. Ecol. Evol. 7, 10252–10256 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Gaglio, D., Cook, T. R., Connan, M., Ryan, P. G. & Sherley, R. B. Dietary studies in birds: testing a non-invasive method using digital photography in seabirds. Methods Ecol. Evol. 8, 214–222 (2017).

    Article  Google Scholar 

  • 55.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. (2019)

  • 56.

    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Article  Google Scholar 

  • 57.

    Hijmans, R. J. Geosphere: Spherical Trigonometry. R Package Version 1.5–10 (2019).

  • 58.

    Burger, A. E. Arrival and departure behavior of common murres at colonies: evidence for an information halo?. Colonial Waterbirds 20, 55–65 (1997).

    Article  Google Scholar 

  • 59.

    Bradstreet, M. S. W. & Brown, R. G. B. Feeding studies. In Population Estimation, Productivity, and Food Habits of Nesting Seabirds at Cape Pierce and the Pribilof Islands, Bering Sea (ed. Johnson, S. R.) 257–306 (Anchorage, Alaska, 1985).

    Google Scholar 

  • 60.

    Vaughn, H. R. H. Flight speed of guillemots, razorbills and puffins. Br. Birds 31, 123 (1937).

    Google Scholar 

  • 61.

    Fifield, D. A., Lewis, K. P., Gjerdrum, C., Robertsoan, G. J. & Wells, R. Offshore seabird monitoring program. Environ. Stud. Res. Funds Rep. 183, 68 (2009).

    Google Scholar 

  • 62.

    Pennycuick, C. J. Actual and “optimum” flight speeds: field data reassessed. J. Exp. Biol. 200, 2355–2361 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Elliott, K. H. et al. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring. Mov. Ecol. 2, 17 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Gaston, A. J. et al. Modeling foraging range for breeding colonies of thick-billed murres Uria lomvia in the Eastern Canadian Arctic and potential overlap with industrial development. Biol. Conserv. 168, 134–143 (2013).

    Article  Google Scholar 

  • 65.

    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    MATH  Article  Google Scholar 

  • 66.

    Neuhäuser, M. Wilcoxon–Mann–Whitney Test. In International Encyclopedia of Statistical Science (ed. Lovric, M.) (Springer, Berlin, Heidelberg, 2011).

    Google Scholar 

  • 67.

    Haynes, W. Bonferroni Correction in Encyclopedia of Systems Biology (Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H.) (Springer, New York, 2013).

  • 68.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 69.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 70.

    Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.4. https://CRAN.R-project.org/package=ggspatial (2020).

  • 71.

    South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth (2017).

  • 72.

    South, A. rnaturalearthdata: World Vector Map Data from Natural Earth used in ‘rnaturalearth’. https://CRAN.R-project.org/package=rnaturalearthdata (2017).

  • 73.

    Pabesma, E. Simple features for R: standardized support for spatial vector data. R J 10, 439–446 (2018).

    Article  Google Scholar 

  • 74.

    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Article  Google Scholar 

  • 75.

    Delord, K. et al. Movements of three alcid species breeding sympatrically in Saint Pierre and Miquelon, northwestern Atlantic Ocean. J. Ornithol. 161, 359–371 (2019).

    Article  Google Scholar 

  • 76.

    Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (2017). https://github.com/taiyun/corrplot.

  • 77.

    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  • 78.

    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra, (Version 1.0.3) (2016).

  • 79.

    Rasband, W. S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/ (1997–2018).

  • 80.

    Lambert, J. D. & Bernier, B. Observations on 4RST capelin in the Gulf of St. Lawrence (A retrospective, 1984–1987). CAFSAC Res. Document 89 (1989).

  • 81.

    Elliott, K. H. & Gaston, A. J. Mass-length relationships and energy content of fishes and invertebrates delivered to nesting Thick-billed Murres Uria lomvia in the Canadian Arctic, 1981–2007. Mar. Ornithol. 36, 25–34 (2008).

    Google Scholar 

  • 82.

    Noble, V. R. & Clark, D. S. Seasonal length: weight relationships of Grenadiers, Chimaeras, and Atlantic Herring caught by Fisheries and Oceans Canada’s Maritimes Region Ecosystem Surveys, using different measurement techniques at sea. Can. Data Rep. Fish. Aquat. Sci. 1291, 4–14 (2019).

    Google Scholar 

  • 83.

    Silva, J. F., Ellis, J. R. & Ayers, R. A. Length-weight relationships of marine fish collected from around the British Isles. Science 150, 109 (2013).

    Google Scholar 

  • 84.

    Morin, R., Ricard, D., Benoît, H. & Surette, T. A review of the biology of Atlantic hagfish (Myxine glutinosa), its ecology, and its exploratory fishery in the southern Gulf of St. Lawrence (NAFO Div. 4T). DFO Canadian Science Advisory Secretariat, v + 39 (2017).

  • 85.

    Erguden, D., Turan, F. & Turan, C. Length–weight and length–length relationships for four shad species along the western Black Sea coast of Turkey. J. Appl. Ichthyol. 27, 942–944 (2011).

    Article  Google Scholar 

  • 86.

    Sievert, C. plotly for R. https://plotly-book.cpsievert.me. [p506] (2018).

  • 87.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2019).

  • 88.

    Zeileisk, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).

    Google Scholar 

  • 89.

    Chambers, J. M. Linear models. In Statistical Models (eds Chambers, J. M. & Hastie, T. J.) (Wadsworth and Brooks/Cole, Belmont, 1992).

    Google Scholar 

  • 90.

    Ahlmann-Eltze, C. ggsignif: Significance Brackets for ggplot2. https://CRAN.R-project.org/package=ggsignif (2019).


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration