Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).
Google Scholar
Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).
Google Scholar
Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).
Google Scholar
Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).
Google Scholar
Williamson, C. E., Morris, D. P., Pace, M. L. & Olson, O. G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 44, 795–803 (1999).
Google Scholar
Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).
Google Scholar
Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).
Google Scholar
Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P. & Ackerman, J. D. The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ. Toxicol. Chem. 29, 2519–2528 (2010).
Google Scholar
Hessen, D. O. Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5, 327–341 (2013).
Google Scholar
Bergström, A. K., Blomqvist, P. & Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 50, 987–994 (2005).
Google Scholar
Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).
Google Scholar
Mikkelson, K. M. et al. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21 (2013).
Google Scholar
Huber, C. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National park. J. Environ. Qual. 34, 1772–1779 (2005).
Google Scholar
Tokuchi, N., Ohte, N., Hobara, S., Kim, S.-J. & Masanori, K. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan. Hydrol. Process. 18, 2727–2736 (2004).
Google Scholar
Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).
Google Scholar
Mikkelson, K. M., Dickenson, E. R., Maxwell, R. M., McCray, J. E. & Sharp, J. O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Change 3, 218–222 (2013).
Google Scholar
Rhoades, C. C. et al. Biogeochemistry of beetle-killed forests: explaining a weak nitrate response. Proc. Natl. Acad. Sci. 110, 1756–1760 (2013).
Google Scholar
Hollinger, D. Y. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70, 291–297 (1986).
Google Scholar
Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).
Google Scholar
le Mellec, A., Gerold, G. & Michalzik, B. Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342, 393–403 (2011).
Google Scholar
Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).
Google Scholar
Carlisle, A., Brown, A. H. F. & White, E. J. Litter fall, leaf production and the effects of defoliation by tortrix viridana in a sessile Oak (Quercus Petraea) woodland. J. Ecol. 54, 65–85 (1966).
Google Scholar
Volney, W. J. A. & Fleming, R. A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82, 283–294 (2000).
Google Scholar
le Mellec, A., Habermann, M. & Michalzik, B. Canopy herbivory altering C to N ratios and soil input patterns of different organic matter fractions in a Scots pine forest. Plant Soil 325, 255–262 (2009).
Google Scholar
Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. BioScience 52, 335–341 (2002).
Google Scholar
Lovett, G. M. & Ruesink, A. E. Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133–138 (1995).
Google Scholar
Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in Oak mesocosms. Ecology 85, 3335–3347 (2004).
Google Scholar
Eimers, M. C., Watmough, S. A., Paterson, A. M., Dillon, P. J. & Yao, H. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 1682–1692 (2009).
Google Scholar
Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).
Google Scholar
Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).
Google Scholar
Madritch, M. D., Donaldson, J. R. & Lindroth, R. L. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol. Biochem. 39, 1192–1201 (2007).
Google Scholar
Hall, R. J., Skakun, R. S. & Aresenault, E. Remotely Sensed Data in the Mapping of Insect Defoliation. in Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches 85–111 (2007).
Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).
Google Scholar
Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).
Google Scholar
Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N. & Galloway, J. N. Change in acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water Air. Soil Pollut. 85, 535–540 (1995).
Google Scholar
Eshleman, K. N. et al. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34, 2005–2116 (1998).
Google Scholar
Reynolds, B. C., Hunter, M. D. & Crossley, D. A. Jr. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21, 74–78 (2000).
Lewis, G. P. & Likens, G. E. Changes in stream chemistry associated with insect defoliation in a Pennsylvania hemlock-hardwoods forest. Forest Ecol. Manag. 238, 199–211 (2007).
Google Scholar
Wilkinson, G. M., Walter, J., Fleck, R. & Pace, M. L. Beyond the trends: the need to understand multiannual dynamics in aquatic ecosystems. Limnol. Oceanogr. Lett. 5, 281–286 (2020).
Google Scholar
Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).
Google Scholar
Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).
Google Scholar
Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).
Google Scholar
Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).
Google Scholar
ICP Waters contributors. Dataset: trends in annual surface water chemistry for acid-sensitive regions in Europe and North America (1990 to 2012). ICP-Waters Programme Centre (2020).
Christenson, L. M., Lovett, G. M., Mitchell, M. J. & Groffman, P. M. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131, 444–452 (2002).
Google Scholar
Bormann, F. H. & Likens, G. E. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. (Springer Science & Business Media, 2012).
I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 160361 (2016).
Google Scholar
Hillstrom, M., Meehan, T. D., Kelly, K. & Lindroth, R. L. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO 2 and O 3. Plant Soil 336, 75–85 (2010).
Google Scholar
Tranvik, L., Olofsson, H. & Bertilsson, S. Photochemical effects on bacterial degradation of dissolved organic matter in lake water. in Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology 193–200 (Atlantic Canada Society for Microbial Ecology Halifax, Canada, 1999).
Bowden, R. D. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75 (2014).
Google Scholar
Lovett, G. M., Hart, J. E., Christenson, L. M. & Jones, C. G. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117, 513–516 (1998).
Google Scholar
Lovett, G. M., Arthur, M. A., Weathers, K. C. & Griffin, J. M. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13, 1188–1200 (2010).
Google Scholar
Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12, 635–643 (2006).
Google Scholar
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
Google Scholar
Giardina, C. P., Ryan, M. G., Hubbard, R. M. & Binkley, D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65, 1272–1279 (2001).
Google Scholar
Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).
Google Scholar
Huber, C., Baumgarten, M., Göttlein, A. & Rotter, V. Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut. Focus 4, 391–414 (2004).
Google Scholar
Griffin, J. M., Turner, M. G. & Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Ecol. Manag 261, 1077–1089 (2011).
Google Scholar
Turner, J. & Long, J. N. Accumulation of organic matter in a series of Douglas-fir stands. Can. J. Res. 5, 681–690 (1975).
Google Scholar
Turner, J. Nutrient cycling in Douglas-fir with respect to age and nutrient status. Ann. Bot. 42, 159–170 (1981).
Google Scholar
Gosz, J. R., Likens, G. E. & Bormann, F. H. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53, 770–784 (1972).
Google Scholar
Bridges, J. R. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7, 131–137 (1981).
Google Scholar
Morehouse, K., Johns, T., Kaye, J. & Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Foresr Ecol. Manag. 255, 2698–2708 (2008).
Google Scholar
Guseva, S. et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Syst. Sci. 24, 697–715 (2020).
Google Scholar
Watkins, E. M., Schindler, D. W., Turner, M. A. & Findlay, D. Effects of solar ultraviolet radiation on epilithic metabolism, and nutrient and community composition in a clear-water boreal lake. Can. J. Fish. Aquat. Sci. 58, 12 (2001).
Google Scholar
Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).
Google Scholar
Currie, D. J. & Kalff, J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29, 298–310 (1984).
Google Scholar
Rochelle-Newall, E. et al. Impacts of elevated atmospheric CO 2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community. Aquat. Sci. 80, 1–14 (2018).
Google Scholar
Larsen, S., Andersen, T. & Hessen, D. O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Change Biol. 17, 1186–1192 (2011).
Google Scholar
Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390 (2020).
Google Scholar
Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 1–33 (2014).
Google Scholar
Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
Google Scholar
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Google Scholar
Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. Rep. 4, 35–50 (2018).
Karlsson, J. et al. Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr. 57, 1042–1048 (2012).
Google Scholar
Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007 (2015).
Google Scholar
Ministry of Natural Resources and Forestry (MNRF). Provincial Digital Elevation Model – Version 3.0. (2013).
Wang, L. & Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 20, 193–213 (2006).
Google Scholar
Candau, J.-N., Fleming, R. A. & Hopkin, A. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can. J. Res. 28, 1733–1741 (1998).
Google Scholar
Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
Ontario Ministry of Natural Resources and Forestry – Provincial Mapping Unit. Ontario Integrated Hydrology Data. (2011).
Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. https://peerj.com/preprints/913v1 (2015) https://doi.org/10.7287/peerj.preprints.913v1.
Robinson, N. P. et al. A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017).
Google Scholar
Eklundh, L., Jönsson, P. & Kuusk, A. Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Adv. Space Res. 39, 119–124 (2007).
Google Scholar
Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).
Google Scholar
Olsson, P.-O., Heliasz, M., Jin, H. & Eklundh, L. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences (2017) https://doi.org/10.5194/bg-14-1703-2017.
Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).
Google Scholar
GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. (Open Source Geospatial Foundation, 2020).
Etten, R. J. H. & J. van. raster: Geographic analysis and modeling with raster data. (2012).
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. Relationships between leaf area index and landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70, 52–68 (1999).
Google Scholar
Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. (2016).
Ministry of Natural Resources and Forestry. Dataset: Ontario Land Cover Compilation v.2.0. Ont. GeoHub (2020).
Ontario Ministry of Environment. Handbook of Analytical Methods for Environmental Samples – Volumes 1 and 2. (1983).
Dillon, P. J. & Molot, L. A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. Biogeosci. 110, (2005).
Skjelkvåle, B. & others. ICP Waters Programme Manual 2010 (ICP Waters Report 105/2010). (2010).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).
Source: Ecology - nature.com