in

Forest fires and climate-induced tree range shifts in the western US

  • 1.

    von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. of Chicago Press, 1807).

  • 2.

    Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).

  • 3.

    Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. 105, 11823–11826 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).

    Google Scholar 

  • 6.

    Thomas, C. D. Climate, climate change and range boundaries: climate and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Google Scholar 

  • 7.

    Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  • 8.

    Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments: climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).

    Google Scholar 

  • 10.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    ADS 

    Google Scholar 

  • 11.

    Im, S. T., Kharuk, V. I., Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS; Siberian Federal University & Lee, V. G. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 17, 176–187 (2020).

    Google Scholar 

  • 12.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Murphy, H. T., VanDerWal, J. & Lovett-Doust, J. Signatures of range expansion and erosion in eastern North American trees: signatures of range expansion and erosion. Ecol. Lett. 13, 1233–1244 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    PubMed 

    Google Scholar 

  • 16.

    Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111, 287–297 (2013).

    Google Scholar 

  • 17.

    Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).

    PubMed 

    Google Scholar 

  • 18.

    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed 

    Google Scholar 

  • 19.

    Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17 (2017).

    Google Scholar 

  • 20.

    Wilkinson, D. M. Mycorrhizal fungi and quaternary plant migrations. Glob. Ecol. Biogeogr. Lett. 7, 137 (1998).

    Google Scholar 

  • 21.

    Wilkinson, D. M. Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J. Biogeogr. 24, 61–65 (1997).

    Google Scholar 

  • 22.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1984).

  • 23.

    Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).

    PubMed 

    Google Scholar 

  • 24.

    Svenning, J.-C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M. & Thompson, J. R. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Glob. Chang. Biol. 24, e335–e351 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 26.

    Moorcroft, P. R., Pacala, S. W. & Lewis, M. A. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 241, 601–616 (2006).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 27.

    Moran, E. V. & Ormond, R. A. Simulating the interacting effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees. PLoS ONE 10, e0142369 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Stralberg, D. et al. Wildfire-mediated vegetation change in boreal forests of Alberta. Can. Ecosphere 9, e02156 (2018).

    Google Scholar 

  • 29.

    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Chang. Biol. 23, 3921–3933 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 31.

    Caplat, P., Anand, M. & Bauch, C. Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. Theor. Ecol. 1, 209–220 (2008).

    Google Scholar 

  • 32.

    Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D. & Franklin, J. Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc. Ecol. 30, 1039–1053 (2015).

    Google Scholar 

  • 33.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Google Scholar 

  • 34.

    Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).

    Google Scholar 

  • 35.

    Harvey, B. J., Donato, D. C. & Turner, M. G. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches: Drought and post-fire tree seedlings. Glob. Ecol. Biogeogr. 25, 655–669 (2016).

    Google Scholar 

  • 36.

    Coop, J. D. et al. Wildfire-driven forest conversion in western north American landscapes. BioScience 70, 659–673 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. 116, 11319–11328 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).

    PubMed 

    Google Scholar 

  • 39.

    Hanes, T. L. Succession after fire in the Chaparral of southern California. Ecol. Monogr. 41, 27–52 (1971).

    Google Scholar 

  • 40.

    McKenzie, D. A. & Tinker, D. B. Fire-induced shifts in overstory tree species composition and associated understory plant composition in Glacier National Park, Montana. Plant Ecol. 213, 207–224 (2012).

    Google Scholar 

  • 41.

    Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).

    Google Scholar 

  • 42.

    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).

    ADS 

    Google Scholar 

  • 43.

    Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. 116, 6193–6198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    ADS 

    Google Scholar 

  • 45.

    Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Google Scholar 

  • 46.

    Dobrowski, S. Z. et al. Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US. Glob. Ecol. Biogeogr. 24, 917–927 (2015).

    Google Scholar 

  • 47.

    Anderson, T. W. An Introduction to Multivariate Statistical Analysis (Wiley-Interscience, 2003).

  • 48.

    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116 (2009).

    Google Scholar 

  • 49.

    Tollefson, J. Quercus chrysolepis. https://www.fs.fed.us/database/feis/plants/tree/quechr/all.html (2008).

  • 50.

    Fryer, J. Quercus kelloggii. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2007).

  • 51.

    Meyer, R. Chrysolepis chrysophylla. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2012).

  • 52.

    Michelle, A. Pinus contorta var. latifolia. https://www.fs.fed.us/database/feis/plants/tree/pinconl/all.html (2003).

  • 53.

    Cope, A. Pinus contorta var. murrayana. https://www.fs.fed.us/database/feis/plants/tree/pinconm/all.html (1993).

  • 54.

    Cope, A. Pinus contorta var. contorta. https://www.fs.fed.us/database/feis/plants/tree/pinconc/all.html (1993).

  • 55.

    Rodman, K. C. et al. A trait‐based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. https://doi.org/10.1111/1365-2745.13480 (2020).

  • 56.

    Davis, K. T., Higuera, P. E. & Sala, A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct. Ecol. 32, 1729–1745 (2018).

    Google Scholar 

  • 57.

    Gutzler, D. S. & Robbins, T. O. Climate variability and projected change in the western United States: regional downscaling and drought statistics. Clim. Dyn. 37, 835–849 (2011).

    Google Scholar 

  • 58.

    Leung, L. R. et al. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Chang. 62, 75–113 (2004).

    Google Scholar 

  • 59.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).

    Google Scholar 

  • 60.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).

    ADS 

    Google Scholar 

  • 61.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 63.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 64.

    RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, PBC, 2020).

  • 65.

    U.S. Forest Service. Forest Inventory and Analysis National Core Field Guide. https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2017/core_ver7-2_10_2017_final.pdf (2017).

  • 66.

    U.S. EPA. Level I Ecoregions of North America Shapefile. (2010).

  • 67.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for north America. PLoS ONE 11, e0156720 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Google Scholar 

  • 69.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  • 70.

    Hill, A. avephill/wildfire-plant_RS: Forest fires and climate-induced tree range shifts in the western US. https://doi.org/10.5281/ZENODO.5555390 (2021).

  • Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies