von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. of Chicago Press, 1807).
Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).
Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).
Google Scholar
Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. 105, 11823–11826 (2008).
Google Scholar
Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).
Thomas, C. D. Climate, climate change and range boundaries: climate and range boundaries. Divers. Distrib. 16, 488–495 (2010).
Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments: climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
Google Scholar
Im, S. T., Kharuk, V. I., Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS; Siberian Federal University & Lee, V. G. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 17, 176–187 (2020).
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
Google Scholar
Murphy, H. T., VanDerWal, J. & Lovett-Doust, J. Signatures of range expansion and erosion in eastern North American trees: signatures of range expansion and erosion. Ecol. Lett. 13, 1233–1244 (2010).
Google Scholar
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).
Google Scholar
Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).
Google Scholar
Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111, 287–297 (2013).
Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).
Google Scholar
Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
Google Scholar
Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17 (2017).
Wilkinson, D. M. Mycorrhizal fungi and quaternary plant migrations. Glob. Ecol. Biogeogr. Lett. 7, 137 (1998).
Wilkinson, D. M. Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J. Biogeogr. 24, 61–65 (1997).
MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1984).
Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).
Google Scholar
Svenning, J.-C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).
Google Scholar
Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M. & Thompson, J. R. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Glob. Chang. Biol. 24, e335–e351 (2018).
Google Scholar
Moorcroft, P. R., Pacala, S. W. & Lewis, M. A. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 241, 601–616 (2006).
Google Scholar
Moran, E. V. & Ormond, R. A. Simulating the interacting effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees. PLoS ONE 10, e0142369 (2015).
Google Scholar
Stralberg, D. et al. Wildfire-mediated vegetation change in boreal forests of Alberta. Can. Ecosphere 9, e02156 (2018).
Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
Google Scholar
Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Chang. Biol. 23, 3921–3933 (2017).
Google Scholar
Caplat, P., Anand, M. & Bauch, C. Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. Theor. Ecol. 1, 209–220 (2008).
Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D. & Franklin, J. Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc. Ecol. 30, 1039–1053 (2015).
Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).
Harvey, B. J., Donato, D. C. & Turner, M. G. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches: Drought and post-fire tree seedlings. Glob. Ecol. Biogeogr. 25, 655–669 (2016).
Coop, J. D. et al. Wildfire-driven forest conversion in western north American landscapes. BioScience 70, 659–673 (2020).
Google Scholar
Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. 116, 11319–11328 (2019).
Google Scholar
Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
Google Scholar
Hanes, T. L. Succession after fire in the Chaparral of southern California. Ecol. Monogr. 41, 27–52 (1971).
McKenzie, D. A. & Tinker, D. B. Fire-induced shifts in overstory tree species composition and associated understory plant composition in Glacier National Park, Montana. Plant Ecol. 213, 207–224 (2012).
Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).
Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).
Google Scholar
Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. 116, 6193–6198 (2019).
Google Scholar
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
Dobrowski, S. Z. et al. Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US. Glob. Ecol. Biogeogr. 24, 917–927 (2015).
Anderson, T. W. An Introduction to Multivariate Statistical Analysis (Wiley-Interscience, 2003).
Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116 (2009).
Tollefson, J. Quercus chrysolepis. https://www.fs.fed.us/database/feis/plants/tree/quechr/all.html (2008).
Fryer, J. Quercus kelloggii. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2007).
Meyer, R. Chrysolepis chrysophylla. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2012).
Michelle, A. Pinus contorta var. latifolia. https://www.fs.fed.us/database/feis/plants/tree/pinconl/all.html (2003).
Cope, A. Pinus contorta var. murrayana. https://www.fs.fed.us/database/feis/plants/tree/pinconm/all.html (1993).
Cope, A. Pinus contorta var. contorta. https://www.fs.fed.us/database/feis/plants/tree/pinconc/all.html (1993).
Rodman, K. C. et al. A trait‐based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. https://doi.org/10.1111/1365-2745.13480 (2020).
Davis, K. T., Higuera, P. E. & Sala, A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct. Ecol. 32, 1729–1745 (2018).
Gutzler, D. S. & Robbins, T. O. Climate variability and projected change in the western United States: regional downscaling and drought statistics. Clim. Dyn. 37, 835–849 (2011).
Leung, L. R. et al. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Chang. 62, 75–113 (2004).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).
Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
Google Scholar
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Google Scholar
Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
Google Scholar
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, PBC, 2020).
U.S. Forest Service. Forest Inventory and Analysis National Core Field Guide. https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2017/core_ver7-2_10_2017_final.pdf (2017).
U.S. EPA. Level I Ecoregions of North America Shapefile. (2010).
Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for north America. PLoS ONE 11, e0156720 (2016).
Google Scholar
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Hill, A. avephill/wildfire-plant_RS: Forest fires and climate-induced tree range shifts in the western US. https://doi.org/10.5281/ZENODO.5555390 (2021).
Source: Ecology - nature.com