Pirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Colchester, M. et al. Justice in the Forest (CIFOR, 2006).
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
Google Scholar
Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).
Google Scholar
First Nationally Determined Contribution Submitted to UNFCCC (Republic of Indonesia, 2016).
FAOSTAT (FAO, accessed 1 March 2020); http://www.fao.org/faostat/en/#data
Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).
Tree Crop Estate Statistics of Indonesia 2017–2019 (Directorate General of Estate Crops, 2019).
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).
Google Scholar
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).
Google Scholar
Srinivas, A. & Koh, L. P. Oil palm expansion drives avifaunal decline in the Pucallpa region of Peruvian Amazonia. Glob. Ecol. Conserv. 7, 183–200 (2016).
Google Scholar
Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 3, 92–98 (2014).
Google Scholar
Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).
Google Scholar
Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).
Google Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
Google Scholar
Statistics Indonesia (BPS, accessed 1 March 2020); https://www.bps.go.id
Jelsma, I., Schoneveld, G. C., Zoomers, A. & van Westen, A. C. M. Unpacking Indonesia’s independent oil palm smallholders: an actor-disaggregated approach to identifying environmental and social performance challenges. Land Use Policy 69, 281–297 (2017).
Google Scholar
Roadmap for the National Oil Palm Industry Towards 2045 (Indonesian cross-ministry team and oil palm institutions and local associations, 2019).
The Palm Oil Dilemma: Policy Tensions Among Higher Productivity, Rising Demand, and Deforestation (IFPRI, 2019).
OECD-FAO Agricultural Outlook 2020–2029 (OECD, 2020).
Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).
Google Scholar
Hoffmann, M. P. et al. Yield gap analysis in oil palm: framework development and application in commercial operations in Southeast Asia. Agric. Syst. 151, 12–19 (2017).
Google Scholar
Molenaar, J. W., Persch-Orth, M., Taylor, C. & Harms, J. Diagnostic Study on Indonesia Oil Palm Smallholders: Developing a Better Understanding of their Performance and Potential (IFC, 2013).
The Future of Food and Agriculture: Trends and Challenges (FAO, 2017).
Hoffmann, M. P. et al. Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: model description, evaluation and application. Agric. Syst. 131, 1–10 (2014).
Google Scholar
Euler, M., Hoffmann, M. P., Fathoni, Z. & Schwarze, S. Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia. Agric. Syst. 146, 111–119 (2016).
Google Scholar
Soliman, T., Lim, F. K. S. S., Lee, J. S. H. H. & Carrasco, L. R. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds. R. Soc. Open Sci. 3, 160292 (2016).
Google Scholar
Grassini, P. et al. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crop. Res. 177, 49–63 (2015).
Google Scholar
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
Google Scholar
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).
Google Scholar
Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).
Google Scholar
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Google Scholar
Indonesia. Second Biennial Update Report. Under the United Nations Framework Convention on Climate Change (Directorate General of Climate Change, Ministry of Environment and Forestry, 2018).
Rhebergen, T. et al. Closing yield gaps in oil palm production systems in Ghana through best management practices. Eur. J. Agron. 115, 126011 (2020).
Google Scholar
Woittiez, L. S., Slingerland, M., Rafik, R. & Giller, K. E. Nutritional imbalance in smallholder oil palm plantations in Indonesia. Nutr. Cycl. Agroecosyst. 111, 73–86 (2018).
Google Scholar
Corley, R. H. V. & Lee, C. H. The physiological basis for genetic improvement of oil palm in Malaysia. Euphytica 60, 179–184 (1992).
Jelsma, I., Woittiez, L. S., Ollivier, J. & Dharmawan, A. H. Do wealthy farmers implement better agricultural practices? An assessment of implementation of Good Agricultural Practices among different types of independent oil palm smallholders in Riau, Indonesia. Agric. Syst. 170, 63–76 (2019).
Google Scholar
Deininger, K. Challenges posed by the new wave of farmland investment. J. Peasant Stud. 38, 217–247 (2011).
Google Scholar
Agricultural Innovation Systems: An Investment Sourcebook (The World Bank, 2012).
Cock, J. et al. Learning from commercial crop performance: oil palm yield response to management under well-defined growing conditions. Agric. Syst. 149, 99–111 (2016).
Google Scholar
Jelsma, I., Slingerland, M., Giller, K. E. & Bijman, J. Collective action in a smallholder oil palm production system in Indonesia: the key to sustainable and inclusive smallholder palm oil? J. Rural Stud. 54, 198–210 (2017).
Google Scholar
Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
Google Scholar
Sahide, M. A. K. & Giessen, L. The fragmented land use administration in Indonesia: analysing bureaucratic responsibilities influencing tropical rainforest transformation systems. Land Use Policy 43, 96–110 (2015).
Google Scholar
Presidential Instruction no. 5 (President of the Replublic of Indonesia, 2019).
REDD+ (UNFCCC, accessed 1 March 2020); https://redd.unfccc.int
Evans, L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, 1993).
van Ittersum, M. K. et al. Yield gap analysis with local to global relevance—A review. F. Crop. Res. 143, 4–17 (2013).
Google Scholar
Fairhurst, T. H. & Griffiths, W. Oil Palm: Best Management Practices for Yield Intensification (International Plant Nutrition Institute, Southeast Asia Program, 2015).
Global Yield Gap Atlas (University of Nebraska, Wageningen University, accessed 1 March 2020); https://www.yieldgap.org
Hekman, W., Slingerland, M. A., van den Beuken, R., Gerrie, V. & Grassini, P. Estimating yield gaps in oil palm in Indonesia using PALMSIM to inform policy on the scope of intensification. In International Oil Palm Conference (IOPC) (2018).
Austin, K. G. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).
Google Scholar
Land Cover Data (Ministry of Environment and Forestry, Indonesia, accessed 1 March 2020).
Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).
Google Scholar
National Forest References Emission Level for Deforestations and Forest Degradation (Ministry of Environment and Forestry, Indonesia, 2016).
Khasanah, N., van Noordwijk, M., Ningsih, H. & Wich, S. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environ. Sci. 1, 1119964 (2015).
Google Scholar
Khasanah, N., van Noordwijk, M., Ningsih, H. & Rahayu, S. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agric. Ecosyst. Environ. 211, 195–206 (2015).
Google Scholar
van Straaten, O. et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).
Google Scholar
Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).
Google Scholar
Harsono, S. S., Prochnow, A., Grundmann, P., Hansen, A. & Hallmann, C. Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy 4, 213–228 (2012).
Google Scholar
Archer, S. A., Murphy, R. J. & Steinberger-Wilckens, R. Methodological analysis of palm oil biodiesel life cycle studies. Renew. Sustain. Energy Rev. 94, 694–704 (2018).
Google Scholar
Brentrup, F., Lammel, J., Stephani, T. & Christensen, B. Updated carbon footprint values for mineral fertilizer from different world regions. In 11th International Conference on Life Cycle Assessment of Food 2018 (LCA Food) (2018).
Lim, Y. L. et al. An update on oil palm nutrient budgets. In International Oil Palm Conference (IOPC) (2018).
Tiemann, T. T. et al. Feeding the palm: a review of oil palm nutrition. Adv. Agron. 152, 149–243 (2018).
Google Scholar
Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Calvo Buendia, E. et al.) (IPCC, 2019).
Caliman, J. P. N-Fertiliser losses quantification in term of N2O emission and NH3 volatilisation. In Oil Palm Best Practices Workshop (MOSTA, 2019).
Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).
Google Scholar
Hassler, E., Corre, M. D., Kurniawan, S. & Veldkamp, E. Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia. Biogeosciences 14, 2781–2798 (2017).
Google Scholar
Source: Ecology - nature.com