Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).
Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Google Scholar
Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).
Google Scholar
Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).
Google Scholar
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Google Scholar
Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).
Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).
Google Scholar
Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).
Google Scholar
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).
Google Scholar
Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).
Google Scholar
Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).
Google Scholar
Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).
Google Scholar
Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).
Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).
Google Scholar
Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).
Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..
Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).
Google Scholar
Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
Google Scholar
Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
Google Scholar
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
Google Scholar
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).
Google Scholar
Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).
Google Scholar
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).
Google Scholar
Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).
Google Scholar
Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).
Google Scholar
Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).
Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).
Google Scholar
Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Google Scholar
Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).
Google Scholar
Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).
Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).
Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).
Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).
Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).
Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).
Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).
Google Scholar
Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).
Google Scholar
Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).
Google Scholar
Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).
Google Scholar
Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).
Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).
Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
Google Scholar
Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).
Google Scholar
Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).
Google Scholar
Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).
Google Scholar
Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).
Google Scholar
Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).
Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
Google Scholar
O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).
Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).
Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Google Scholar
Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).
Google Scholar
Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).
Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).
Google Scholar
Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).
Google Scholar
Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).
Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).
Source: Ecology - nature.com