Huss, M. et al. Towards mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).
Google Scholar
Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).
Google Scholar
Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018).
Google Scholar
Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).
Google Scholar
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).
Google Scholar
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Google Scholar
Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).
Google Scholar
Zhou, L. et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Res. 160, 18–28 (2019).
Google Scholar
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Google Scholar
Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).
Google Scholar
Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).
Google Scholar
Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between lands, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).
Google Scholar
Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Google Scholar
Clark, D. R. et al. Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5, e1280 (2018).
Google Scholar
Zah, R. & Uehlinger, U. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw. Biol. 46, 1597–1608 (2001).
Google Scholar
Singer, G. A. et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).
Google Scholar
Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121 (2010).
Google Scholar
Robinson, C. T. & Gessner, M. O. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122, 258–263 (2000).
Google Scholar
Robinson, C. T. & Jolidon, C. Leaf breakdown and the ecosystem functioning of alpine streams. J. North Am. Benthol. Soc. 24, 495–508 (2005).
Google Scholar
McKernan, C., Cooper, D. J. & Schweiger, E. W. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw. Biol. 63, 518–529 (2018).
Google Scholar
Fellman, J. B. et al. Stream temperature response to variable glacier coverage in coastal watersheds of southeast Alaska. Hydrol. Process. 28, 2062–2073 (2014).
Google Scholar
Gessner, M. O. & Robinson, C. T. in Aquatic Ecology Series: Ecology of a Glacial Floodplain Vol. 1 (eds Ward, J. V. & Uehlinger, U.) 123–127 (Springer, 2003).
Tiegs, S. D., Clapcott, J. E., Griffiths, N. A. & Boulton, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol. Indic. 32, 131–139 (2013).
Google Scholar
Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).
Google Scholar
Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533 (2013).
Google Scholar
Colas, F. et al. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol. Indic. 106, 105466 (2019).
Google Scholar
Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2, 578–617 (2006).
Google Scholar
Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. N. Phytol. Trust 199, 288–299 (2013).
Google Scholar
Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Google Scholar
Wang, M. et al. Psychrophilic fungi from the world’s roof. Persoonia 34, 100–112 (2015).
Google Scholar
Zang, T. et al. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).
Google Scholar
Wilhelm, L., Singer, G. A., Fashing, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).
Google Scholar
Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).
Google Scholar
Jacobsen, D. & Dangles, O. Environmental harshness and global richness patterns in glacier-fed streams. Glob. Ecol. Biogeogr. 21, 647–656 (2012).
Google Scholar
Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1042 (2008).
Google Scholar
Robinson, C. T., Gessner, M. O., Callies, K. A., Jolidon, C. & Ward, J. V. Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J. North Am. Benthol. Soc. 19, 250–262 (2000).
Google Scholar
Ferreira, V., Graça, M., Pedroso de Lima, J. L. M. & Gomes, R. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. fur Hydrobiol. 165, 493–513 (2006).
Google Scholar
Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).
Google Scholar
Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 9, 5443–5452 (2003).
Google Scholar
Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).
Google Scholar
Cristiano, G., Cicolani, B., Miccoli, F. P. & Di Sabatino, A. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (central Italy). PeerJ 7, e6250 (2019).
Google Scholar
Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).
Google Scholar
Hood, E. & Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114, G03001 (2009).
Google Scholar
Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shifts in dissolved organic carbon export from quasi-chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).
Google Scholar
Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).
Google Scholar
GLIMS Glacier Viewer (Global Land Ice Measurements from Space (GLIMS), 2018); http://www.glims.org/maps/glims
Robinson, C. T., Gessner, M. O. & Ward, J. V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw. Biol. 40, 215–228 (1998).
Google Scholar
Goodman, K. J., Baker, M. & Wurtsbaugh, W. Mountain lakes increase organic matter decomposition rates in streams. J. North Am. Benthol. Soc. 29, 521–529 (2010).
Google Scholar
Pfankuch, D. J. Stream Reach Inventory and Channel Stability Evaluation (Northern Region, Montana, US Department Forest Service, 1975).
Vizza, C., Zwart, J. A., Jones, S. E., Tiegs, S. D. & Lamberti, G. A. Landscape patterns shape wetland pond ecosystem function from glacial headwaters to ocean. Limnol. Oceanogr. 62, S207–S221 (2017).
Google Scholar
Tiegs, S. D. CELLDEX Protocol Part 1 https://www.researchgate.net/publication/281243407_CELLDEX_Protocol_Part_1 (2015).
Tiegs, S. D. Protocol for Microbial DNA/RNA Sampling—CELLDEX Protocol https://www.researchgate.net/publication/281245895_Protocol_for_microbial_DNARNA_sampling_-_CELLDEX_Project (2015).
Tiegs, S. D., Langhans, S. D., Tockner, K. & Gessner, M. O. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J. North Am. Benthol. Soc. 26, 70–77 (2007).
Google Scholar
Tiegs, S. D. CELLDEX Protocol Part 2 https://www.researchgate.net/publication/283645782_CELLDEX_Protocol_Part_2 (2015).
Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).
Google Scholar
Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).
Google Scholar
Edwards, I. P., Upchurch, R. A. & Zak, D. R. Isolation of fungal Cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl. Environ. Microbiol. 74, 3481–3489 (2008).
Google Scholar
McKew, B. A. & Smith, C. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 45–64 (Springer, 2017).
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
Google Scholar
Nilsson, R. H. et al. Variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193–201 (2008).
Google Scholar
Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97–111 (2009).
Google Scholar
16S Metagenomic Sequencing Library Preparation (Illumina, 2013); https://ww.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106 (1995).
Google Scholar
Dumbrell, A. J., Ferguson, R. M. W. & Clark, D. R. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 155–206 (Springer, 2017).
Maček, I. et al. Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol. Ecol. 28, 3445–3458 (2019).
Google Scholar
Nilsson, R. H. et al. UNITE Community: Communication and Identification of DNA Based Fungal Species (UNITE, 2018); https://unite.ut.ee/search.php#fndtn-panel1
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).
Google Scholar
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 2–18 (2017).
Google Scholar
McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Google Scholar
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
Google Scholar
Wang, Y., Maumann, U., Wright, S. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data. R package https://cran.r-project.org/package=mvabund (2018).
Source: Ecology - nature.com