in

Fungal decomposition of river organic matter accelerated by decreasing glacier cover

  • 1.

    Huss, M. et al. Towards mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).

    Article 

    Google Scholar 

  • 2.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018).

    Article 

    Google Scholar 

  • 4.

    Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 

    Google Scholar 

  • 5.

    Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article 

    Google Scholar 

  • 7.

    Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Zhou, L. et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Res. 160, 18–28 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).

    Article 

    Google Scholar 

  • 11.

    Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).

    Article 

    Google Scholar 

  • 12.

    Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between lands, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article 

    Google Scholar 

  • 13.

    Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Clark, D. R. et al. Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5, e1280 (2018).

    Article 

    Google Scholar 

  • 15.

    Zah, R. & Uehlinger, U. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw. Biol. 46, 1597–1608 (2001).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Singer, G. A. et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Robinson, C. T. & Gessner, M. O. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122, 258–263 (2000).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Robinson, C. T. & Jolidon, C. Leaf breakdown and the ecosystem functioning of alpine streams. J. North Am. Benthol. Soc. 24, 495–508 (2005).

    Article 

    Google Scholar 

  • 20.

    McKernan, C., Cooper, D. J. & Schweiger, E. W. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw. Biol. 63, 518–529 (2018).

    Article 

    Google Scholar 

  • 21.

    Fellman, J. B. et al. Stream temperature response to variable glacier coverage in coastal watersheds of southeast Alaska. Hydrol. Process. 28, 2062–2073 (2014).

    Article 

    Google Scholar 

  • 22.

    Gessner, M. O. & Robinson, C. T. in Aquatic Ecology Series: Ecology of a Glacial Floodplain Vol. 1 (eds Ward, J. V. & Uehlinger, U.) 123–127 (Springer, 2003).

  • 23.

    Tiegs, S. D., Clapcott, J. E., Griffiths, N. A. & Boulton, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol. Indic. 32, 131–139 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533 (2013).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Colas, F. et al. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol. Indic. 106, 105466 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2, 578–617 (2006).

    Article 

    Google Scholar 

  • 28.

    Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. N. Phytol. Trust 199, 288–299 (2013).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • 30.

    Wang, M. et al. Psychrophilic fungi from the world’s roof. Persoonia 34, 100–112 (2015).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Zang, T. et al. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).

    Article 

    Google Scholar 

  • 32.

    Wilhelm, L., Singer, G. A., Fashing, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).

    Article 

    Google Scholar 

  • 34.

    Jacobsen, D. & Dangles, O. Environmental harshness and global richness patterns in glacier-fed streams. Glob. Ecol. Biogeogr. 21, 647–656 (2012).

    Article 

    Google Scholar 

  • 35.

    Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1042 (2008).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Robinson, C. T., Gessner, M. O., Callies, K. A., Jolidon, C. & Ward, J. V. Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J. North Am. Benthol. Soc. 19, 250–262 (2000).

    Article 

    Google Scholar 

  • 37.

    Ferreira, V., Graça, M., Pedroso de Lima, J. L. M. & Gomes, R. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. fur Hydrobiol. 165, 493–513 (2006).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 9, 5443–5452 (2003).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).

    Article 

    Google Scholar 

  • 41.

    Cristiano, G., Cicolani, B., Miccoli, F. P. & Di Sabatino, A. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (central Italy). PeerJ 7, e6250 (2019).

    Article 

    Google Scholar 

  • 42.

    Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).

    Article 

    Google Scholar 

  • 43.

    Hood, E. & Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114, G03001 (2009).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shifts in dissolved organic carbon export from quasi-chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).

    Article 

    Google Scholar 

  • 46.

    GLIMS Glacier Viewer (Global Land Ice Measurements from Space (GLIMS), 2018); http://www.glims.org/maps/glims

  • 47.

    Robinson, C. T., Gessner, M. O. & Ward, J. V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw. Biol. 40, 215–228 (1998).

    Article 

    Google Scholar 

  • 48.

    Goodman, K. J., Baker, M. & Wurtsbaugh, W. Mountain lakes increase organic matter decomposition rates in streams. J. North Am. Benthol. Soc. 29, 521–529 (2010).

    Article 

    Google Scholar 

  • 49.

    Pfankuch, D. J. Stream Reach Inventory and Channel Stability Evaluation (Northern Region, Montana, US Department Forest Service, 1975).

  • 50.

    Vizza, C., Zwart, J. A., Jones, S. E., Tiegs, S. D. & Lamberti, G. A. Landscape patterns shape wetland pond ecosystem function from glacial headwaters to ocean. Limnol. Oceanogr. 62, S207–S221 (2017).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Tiegs, S. D. CELLDEX Protocol Part 1 https://www.researchgate.net/publication/281243407_CELLDEX_Protocol_Part_1 (2015).

  • 52.

    Tiegs, S. D. Protocol for Microbial DNA/RNA Sampling—CELLDEX Protocol https://www.researchgate.net/publication/281245895_Protocol_for_microbial_DNARNA_sampling_-_CELLDEX_Project (2015).

  • 53.

    Tiegs, S. D., Langhans, S. D., Tockner, K. & Gessner, M. O. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J. North Am. Benthol. Soc. 26, 70–77 (2007).

    Article 

    Google Scholar 

  • 54.

    Tiegs, S. D. CELLDEX Protocol Part 2 https://www.researchgate.net/publication/283645782_CELLDEX_Protocol_Part_2 (2015).

  • 55.

    Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Edwards, I. P., Upchurch, R. A. & Zak, D. R. Isolation of fungal Cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl. Environ. Microbiol. 74, 3481–3489 (2008).

    CAS 
    Article 

    Google Scholar 

  • 58.

    McKew, B. A. & Smith, C. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 45–64 (Springer, 2017).

  • 59.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Nilsson, R. H. et al. Variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193–201 (2008).

    Article 

    Google Scholar 

  • 61.

    Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97–111 (2009).

    CAS 
    Article 

    Google Scholar 

  • 62.

    16S Metagenomic Sequencing Library Preparation (Illumina, 2013); https://ww.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

  • 63.

    Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106 (1995).

    Article 

    Google Scholar 

  • 64.

    Dumbrell, A. J., Ferguson, R. M. W. & Clark, D. R. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 155–206 (Springer, 2017).

  • 65.

    Maček, I. et al. Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol. Ecol. 28, 3445–3458 (2019).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Nilsson, R. H. et al. UNITE Community: Communication and Identification of DNA Based Fungal Species (UNITE, 2018); https://unite.ut.ee/search.php#fndtn-panel1

  • 67.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 2–18 (2017).

    Article 

    Google Scholar 

  • 69.

    McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Article 

    Google Scholar 

  • 70.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article 

    Google Scholar 

  • 71.

    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article 

    Google Scholar 

  • 72.

    Wang, Y., Maumann, U., Wright, S. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data. R package https://cran.r-project.org/package=mvabund (2018).


  • Source: Ecology - nature.com

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    Study predicts the oceans will start emitting ozone-depleting CFCs