Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J Res. 2003;33:612–23.
Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:1–32.
Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.
Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. London, UK: Academic Press; 2008.
Maron JL, Marler M, Klironomos JN, Cleveland CC. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett. 2011;14:36–41.
García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2013.
Lin X, Alspaugh JA, Liu H, Harris S. Fungal morphogenesis. Cold Spring Harb Perspect Med. 2014;5:a019679.
Griffin DH. Fungal physiology. 2nd ed. New York, NY: John Wiley and Sons; 1994.
Trewavas A. What is plant behaviour? Plant, Cell Environ. 2009;32:606–16.
Karban R. Plant behaviour and communication. Ecol Lett. 2008;11:727–39.
de Kroon H, Mommer L. Root foraging theory put to the test. Trends Ecol Evol. 2006;21:113–6.
Novoplansky A. Developmental plasticity in plants: implications of non-cognitive behavior. Evol Ecol. 2002;16:177–88.
Lovett Doust L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): II. The dynamics of leaves, and a reciprocal transplant-replant experiment. J Ecol. 1981;69:757–68.
Saiz H, Bittebiere A-K, Benot M-L, Jung V, Mony C. Understanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. J Veg Sci. 2016;27:759–70.
Andrews JH. Comparative ecology of microorganisms and macroorganisms. New York, NY: Springer; 1991.
Carlile MJ. The success of the hypha and mycelium. In: Gow NAR, Gadd GM, editors. The growing fungus. London: Chapman & Hall; 1995. pp. 3–20.
Boddy L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13.
Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Mov Ecol. 2019;7:36.
Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–9.
Harris K, Young IM, Gilligan CA, Otten W, Ritz K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol Ecol. 2003;44:45–56.
Otten W, Harris K, Young IM, Ritz K, Gilligan CA. Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil. Soil Biol Biochem. 2004;36:203–10.
Burges A, Nicholas DP. Use of soil sections in studying the amount of fungal hyphae in soil. Soil Sci. 1961;92:25–9.
Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci USA. 2010;107:14369–72.
Wolfaardt GM, Hendry MJ, Birkham T, Bressel A, Gardner MN, Sousa AJ, et al. Microbial response to environmental gradients in a ceramic-based diffusion system. Biotechnol Bioeng. 2008;100:141–9.
Otten W, Pajor R, Schmidt S, Baveye PC, Hague R, Falconer RE. Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries. Soil Biol Biochem. 2012;51:53–5.
Deng J, Orner EP, Chau JF, Anderson EM, Kadilak AL, Rubinstein RL, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol Biochem. 2015;83:116–24.
Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.
Stanley CE, Grossmann G, Casadevall i Solvas X, DeMello AJ. Soil-on-a-chip: microfluidic platforms for environmental organismal studies. Lab Chip. 2016;16:228–41.
Held M, Kaspar O, Edwards C, Nicolau DV. Intracellular mechanisms of fungal space searching in microenvironments. Proc Natl Acad Sci USA. 2019;116:13543–52.
Soufan R, Delaunay Y, Gonod LV, Shor LM, Garnier P, Otten W, et al. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front Environ Sci. 2018;6:68.
Schmieder SS, Stanley CE, Rzepiela A, van Swaay D, Sabotič J, Nørrelykke SF, et al. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr Biol. 2019;29:217–28.e4.
Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VE, Hammer EC. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 2018;12:312–9.
Veresoglou SD, Wang D, Andrade-Linares DR, Hempel S, Rillig MC. Fungal decision to exploit or explore depends on growth rate. Micro Ecol. 2018;75:289–92.
Lange M, Smith, Alexander H. The coprinus ephemerus group. Mycologia. 1953;45:747–80.
Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. Ecol Manag. 2013;289:48–57.
Hughes KW, Petersen RH. Transatlantic disjunction in fleshy fungi III: Gymnopus confluens. MycoKeys. 2015;9:37–63.
Garnier-Delcourt M, Reckinger C, Tholl M-T, Turk J. Notes mycologiques luxembourgeoises. IV. Bull Soc Nat Luxemb. 2011;112:39–50.
Maynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol. 2019;4:846–53.
Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.
Dowson CG, Rayner ADM, Boddy L. Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. N Phytol. 1989;111:699–705.
Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.
Held M, Binz M, Edwards C, Nicolau DV. Dynamic behaviour of fungi in microfluidics: a comparative study. In: Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII. 2009. pp. 718213. https://doi.org/10.1117/12.822464.
Hanson KL, Nicolau DV, Filipponi L, Wang L, Lee AP, Nicolau DV. Fungi use efficient algorithms for the exploration of microfluidic networks. Small. 2006;2:1212–20.
Falconer RE, Houston AN, Otten W, Baveye PC. Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 2012;177:111–9.
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
Nezhad AS, Packirisamy M, Bhat R, Geitmann A. In vitro study of oscillatory growth dynamics of camellia pollen tubes in microfluidic environment. IEEE Trans Biomed Eng. 2013;60:3185–93.
Tayagui A, Sun Y, Collings D, Garrill A, Nock V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab Chip. 2017;17:3643–53.
Brand A, Gow NA. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol. 2009;12:350–7.
Pantidou M, Watling R, Gonou Z. Mycelial characters, anamorphs, and teleomorphs in genera and species of various families of Agaricales in culture. Mycotaxon. 1983;17:409–32.
Boekhout T, Stalpers J, Verduin SJW, Rademaker J, Noordeloos ME. Experimental taxonomic studies in Psilocybe sect. Psilocybe. Mycol Res. 2002;106:1251–61.
Valenzuela E, Garnica S. Pseudohelicomyces, a new anamorph of Psilocybe. Mycol Res. 2000;104:738–41.
Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, et al. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev. 2014;28:36–55.
Source: Ecology - nature.com