in

Gaining insight into the assimilated diet of small bear populations by stable isotope analysis

  • 1.

    Robbins, C. T. & Cunha, T. J. Wildlife Feeding and Nutrition (Elsevier Science, 2014).

    Google Scholar 

  • 2.

    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).

    Article 

    Google Scholar 

  • 3.

    Barboza, P. S., Parker, K. L., & Hume, I. D. Integrative Wildlife Nutrition (Springer, 2009).

    Book 

    Google Scholar 

  • 4.

    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).

    Article 

    Google Scholar 

  • 5.

    Baynham-Herd, Z., Redpath, S., Bunnefeld, N. & Keane, A. Predicting intervention priorities for wildlife conflicts. Conserv. Biol. 34, 232–243 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Treves, A. & Santiago-Ávila, F. J. Myths and assumptions about human-wildlife conflict and coexistence. Conserv. Biol. 34, 811–818 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: The role of geographical and environmental factors: Biogeographical variation in brown bear diet. Mammal Rev. 42, 120–143 (2012).

    Article 

    Google Scholar 

  • 8.

    Kavčič, I. et al. Fast food bears: Brown bear diet in a human-dominated landscape with intensive supplemental feeding. Wildl. Biol. 21, 1–8 (2015).

    Article 

    Google Scholar 

  • 9.

    Cozzi, G. et al. Anthropogenic food resources foster the coexistence of distinct life history strategies: Year-round sedentary and migratory brown bears. J. Zool. 300, 142–150 (2016).

    Article 

    Google Scholar 

  • 10.

    Lewis, D. L. et al. Foraging ecology of black bears in urban environments: Guidance for human-bear conflict mitigation. Ecosphere 6, art141 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Naves, J., Fernández-Gil, A., Rodríguez, C. & Delibes, M. Brown bear food habits at the border of its range: A long-term study. J. Mammal. 87, 899–908 (2006).

    Article 

    Google Scholar 

  • 12.

    Rodríguez, C., Naves, J., Fernández-Gil, A., Obeso, J. R. & Delibes, M. Long-term trends in food habits of a relict brown bear population in northern Spain: The influence of climate and local factors. Environ. Conserv. 34, 36–44 (2007).

    Article 

    Google Scholar 

  • 13.

    Ciucci, P., Tosoni, E., Di Domenico, G., Quattrociocchi, F. & Boitani, L. Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. J. Mammal. 95, 572–586 (2014).

    Article 

    Google Scholar 

  • 14.

    Reynolds-Hogland, M. J., Pacifici, L. B. & Mitchell, M. S. Linking resources with demography to understand resource limitation for bears: Linking resources and demography. J. Appl. Ecol. 44, 1166–1175 (2007).

    Article 

    Google Scholar 

  • 15.

    Robbins, C. T., Schwartz, C. C. & Felicetti, L. A. Nutritional ecology of ursids: A review of newer methods and management implications. Ursus 15, 161–171 (2004).

    Article 

    Google Scholar 

  • 16.

    Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. Resolving human-bear conflict: A global survey of countries, experts, and key factors: Human-bear conflict. Conserv. Lett. 7, 501–513 (2014).

    Article 

    Google Scholar 

  • 17.

    Hobson, K. A., McLellan, B. N. & Woods, J. G. Using stable carbon (δ 13C) and nitrogen (δ 15N) isotopes to infer trophic relationships among black and grizzly bears in the upper Columbia River basin, British Columbia. Can. J. Zool. 78, 1332–1339 (2000).

    Article 

    Google Scholar 

  • 18.

    Mowat, G. & Heard, D. C. Major components of grizzly bear diet across North America. Can. J. Zool. 84, 473–489 (2006).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: A trade-off between nutritional requirements and the risk of infanticide?. Oecologia 138, 465–474 (2004).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Hopkins, J. B. et al. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management. J. Wildl. Manag. 76, 703–713 (2012).

    Article 

    Google Scholar 

  • 21.

    Hata, A. et al. Stable isotope and DNA analyses reveal the spatial distribution of crop-foraging brown bears. J. Zool. 303, 207–217 (2017).

    Article 

    Google Scholar 

  • 22.

    Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630 (1999).

    Article 

    Google Scholar 

  • 23.

    Rode, K. D., Farley, S. D. & Robbins, C. T. Sexual dimorphism, reproductive strategy, and human activities determine resource use by brown bears. Ecology 87, 2636–2646 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Hilderbrand, G. V. et al. Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 74, 2080–2088 (1996).

    Article 

    Google Scholar 

  • 25.

    Murray, M. H., Fassina, S., Hopkins, J. B., Whittington, J. & St. Clair, C. C. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park. PLoS ONE 12, e0175658 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Mizukami, R. N., Goto, M., Izumiyama, S., Hayashi, H. & Yoh, M. Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16, 93–101 (2005).

    Article 

    Google Scholar 

  • 27.

    Mizukami, R. N. et al. Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes Environ. Health Stud. 41, 87–94 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Hopkins, J. B. & Kurle, C. M. Measuring the realized niches of animals using stable isotopes: From rats to bears. Methods Ecol. Evol. 7, 210–221 (2016).

    Article 

    Google Scholar 

  • 29.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Blasi, M. F. et al. Assessing resource use patterns of Mediterranean loggerhead sea turtles Caretta caretta (Linnaeus, 1758) through stable isotope analysis. Eur. Zool. J. 85, 71–87 (2018).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article 

    Google Scholar 

  • 34.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Article 

    Google Scholar 

  • 35.

    Hopkins, J. B. & Ferguson, J. M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE 7, e28478 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).

    Article 

    Google Scholar 

  • 37.

    Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control 77, 66–75 (2014).

    Article 

    Google Scholar 

  • 38.

    García-Vázquez, A., Pinto-Llona, A. C. & Grandal-d’Anglade, A. Brown bear (Ursus arctos L.) palaeoecology and diet in the Late Pleistocene and Holocene of the NW of the Iberian Peninsula: A study on stable isotopes. Quat. Int. 481, 42–51 (2018).

    Article 

    Google Scholar 

  • 39.

    Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).

    Article 

    Google Scholar 

  • 40.

    Felicetti, L. A. et al. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears. Can. J. Zool. 81, 763–770 (2003).

    Article 

    Google Scholar 

  • 41.

    Schwartz, C. C. et al. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: A reassessment. Wildl. Soc. Bull. 38, 664–670 (2014).

    Article 

    Google Scholar 

  • 42.

    Hopkins, J. B., Koch, P. L., Ferguson, J. M. & Kalinowski, S. T. The changing anthropogenic diets of American black bears over the past century in Yosemite National Park. Front. Ecol. Environ. 12, 107–114 (2014).

    Article 

    Google Scholar 

  • 43.

    Bentzen, T. W., Shideler, R. T. & O’Hara, T. M. Use of stable isotope analysis to identify food-conditioned grizzly bears on Alaska’s North Slope. Ursus 25, 14 (2014).

    Article 

    Google Scholar 

  • 44.

    Teunissen van Manen, J. L., Muller, L. I., Li, Z., Saxton, A. M. & Pelton, M. R. Using stable isotopes to assess dietary changes of American black bears from 1980 to 2001. Isotopes Environ. Health Stud. 50, 382–398 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Braunstein, J. L., Clark, J. D., Williamson, R. H. & Stiver, W. H. Black bear movement and food conditioning in an exurban landscape. J. Wildl. Manag. 84, 1038–1050 (2020).

    Article 

    Google Scholar 

  • 46.

    Narita, R., Mano, T., Yokoyama, R. & Takayanagi, A. Variation in maize consumption by brown bears (Ursus arctos ) in two coastal areas of Hokkaido, Japan. Mammal Study 36, 33–39 (2011).

    Article 

    Google Scholar 

  • 47.

    Matsubayashi, J., Morimoto, J., Mano, T., Aryal, A. & Nakamura, F. Using stable isotopes to understand the feeding ecology of the Hokkaido brown bear (Ursus arctos) in Japan. Ursus 25, 87–97 (2014).

    Article 

    Google Scholar 

  • 48.

    Javornik, J. et al. Effects of ethanol storage and lipids on stable isotope values in a large mammalian omnivore. J. Mammal. 100, 150–157 (2019).

    Article 

    Google Scholar 

  • 49.

    Pauli, J. N., Whiteman, J. P., Riley, M. D. & Middleton, A. D. Defining noninvasive approaches for sampling of vertebrates. Conserv. Biol. 24, 349–352 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Ueda, M. & Bell, L. S. Assessing dual hair sampling for isotopic studies of grizzly bears. Rapid Commun. Mass Spectrom. 33, 1475–1480 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).

    Article 

    Google Scholar 

  • 52.

    Lerner, J. E. et al. Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population. PLoS ONE 13, e0192241 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Woods, J. G. et al. Genetic tagging of free-ranging black and brown bears. Wildl. Soc. Bull. 1973–2006(27), 616–627 (1999).

    Google Scholar 

  • 54.

    Ciucci, P. et al. Estimating abundance of the remnant Apennine brown bear population using multiple noninvasive genetic data sources. J. Mammal. 96, 206–220 (2015).

    Article 

    Google Scholar 

  • 55.

    Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 16804 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Kendall, K. C. et al. Grizzly bear density in glacier National Park, Montana. J. Wildl. Manag. 72, 1693–1705 (2008).

    Article 

    Google Scholar 

  • 57.

    Darimont, C. T. & Reimchen, T. E. Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can. J. Zool. 80, 1638–1642 (2002).

    Article 

    Google Scholar 

  • 58.

    Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Schwertl, M., Auerswald, K. & Schnyder, H. Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Commun. Mass Spectrom. 17, 1312–1318 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Jones, E. S., Heard, D. C. & Gillingham, M. P. Temporal variation in stable carbon and nitrogen isotopes of grizzly bear guardhair and underfur. Wildl. Soc. Bull. 34, 1320–1325 (2006).

    Article 

    Google Scholar 

  • 61.

    Jacoby, M. E. et al. Trophic Relations of brown and black bears in several western North American ecosystems. J. Wildl. Manag. 63, 921 (1999).

    Article 

    Google Scholar 

  • 62.

    Jimbo, M. et al. Hair growth in brown bears and its application to ecological studies on wild bears. Mammal Study 45, 1–9 (2020).

    Article 

    Google Scholar 

  • 63.

    Mosbacher, J. B., Michelsen, A., Stelvig, M., Hendrichsen, D. K. & Schmidt, N. M. Show me your rump hair and I will tell you what you ate—the dietary history of muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 11, e0152874 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Mowat, G., Curtis, P. J. & Lafferty, D. J. R. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears. PLoS ONE 12, e0172194 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Adams, M. S. et al. Intrapopulation diversity in isotopic niche over landscapes: Spatial patterns inform conservation of bear–salmon systems. Ecosphere 8, e01843 (2017).

    Article 

    Google Scholar 

  • 67.

    Reimchen, T. E. & Klinka, D. R. Niche differentiation between coat colour morphs in the Kermode bear (Ursidae) of coastal British Columbia. Biol. J. Linn. Soc. 122, 274–285 (2017).

    Article 

    Google Scholar 

  • 68.

    Kaczensky, P. et al. Status, Management and Distribution of Large Carnivores—Bear, Lynx, Wolf & Wolverine—in Europe (Verlag nicht ermittelbar, 2013).

    Google Scholar 

  • 69.

    Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e del Mare, Roma 56, (2013).

  • 70.

    Ciucci, P. & Boitani, L. The Apennine brown bear: A critical review of its status and conservation problems. Ursus 19, 130–145 (2008).

    Article 

    Google Scholar 

  • 71.

    Ciucci, P. et al. Distribution of the brown bear (Ursus arctos marsicanus) in the Central Apennines, Italy, 2005–2014. Hystrix Ital. J. Mammal. 28, 86–91 (2017).

    Google Scholar 

  • 72.

    Maiorano, L., Chiaverini, L., Falco, M. & Ciucci, P. Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biol. Conserv. 237, 19–27 (2019).

    Article 

    Google Scholar 

  • 73.

    Benazzo, A. et al. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl. Acad. Sci. 114, E9589–E9597 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Gervasi, V. & Ciucci, P. Demographic projections of the Apennine brown bear population Ursus arctos marsicanus (Mammalia: Ursidae) under alternative management scenarios. Eur. Zool. J. 85, 242–252 (2018).

    Article 

    Google Scholar 

  • 75.

    Clevenger, A. P., Purroy, F. J. & Pelton, M. R. Food habits of brown bears (Ursus arctos) in the Cantabrian Mountains, Spain. J. Mammal. 73, 415–421 (1992).

    Article 

    Google Scholar 

  • 76.

    Servheen, C. Conservation of small bear populations through strategic planning. Ursus 10, 67–73 (1998).

    Google Scholar 

  • 77.

    Tosoni, E., Mei, M. & Ciucci, P. Ants as food for Apennine brown bears. Eur. Zool. J. 85, 342–348 (2018).

    Article 

    Google Scholar 

  • 78.

    Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651 (1990).

    Article 

    Google Scholar 

  • 79.

    Cameron, M. D. et al. Body size plasticity in North American black and brown bears. Ecosphere 11, e03235 (2020).

    Article 

    Google Scholar 

  • 80.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Banner, K. M., Irvine, K. M. & Rodhouse, T. J. The use of Bayesian priors in Ecology: The good, the bad and the not great. Methods Ecol. Evol. 11, 882–889 (2020).

    Article 

    Google Scholar 

  • 82.

    Lemoine, N. P. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).

    Article 

    Google Scholar 

  • 83.

    Franco-Trecu, V. et al. Bias in diet determination: Incorporating traditional methods in Bayesian mixing models. PLoS ONE 8, e80019 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Johnson, D. L., Henderson, M. T., Anderson, D. L., Booms, T. L. & Williams, C. T. Bayesian stable isotope mixing models effectively characterize the diet of an Arctic raptor. J. Anim. Ecol. 89, 2972–2985 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Swan, G. J. F. et al. Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods Ecol. Evol. 11, 139–149 (2020).

    Article 

    Google Scholar 

  • 86.

    Ward, E. J., Semmens, B. X. & Schindler, D. E. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ. Sci. Technol. 44, 4645–4650 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Keis, M., Tammeleht, E., Valdmann, H. & Saarma, U. Ants in brown bear diet, and discovery of a new ant species for Estonia from brown bear scats. Hystrix Ital. J. Mammal. 30, 0 (2019).

    Google Scholar 

  • 88.

    Warlick, A. et al. Using Bayesian stable isotope mixing models and generalized additive models to resolve diet changes for fish-eating killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 649, 189–200 (2020).

    Article 

    Google Scholar 

  • 89.

    Derbridge, J. J. et al. Experimentally derived δ13C and δ15N discrimination factors for gray wolves and the impact of prior information in Bayesian mixing models. PLoS ONE 10, e0119940 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Chiaradia, A., Forero, M. G., McInnes, J. C. & Ramírez, F. Searching for the true diet of marine predators: Incorporating Bayesian priors into stable isotope mixing models. PLoS ONE 9, e92665 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    Ciucci, P., Mancinelli, S., Boitani, L., Gallo, O. & Grottoli, L. Anthropogenic food subsidies hinder the ecological role of wolves: Insights for conservation of apex predators in human-modified landscapes. Glob. Ecol. Conserv. 21, e00841 (2020).

    Article 

    Google Scholar 

  • 92.

    Galluzzi, A., Donfrancesco, V., Mastrantonio, G., Sulli, C. & Ciucci, P. Cost of coexisting with a relict large carnivore population: Impact of Apennine brown bears, 2005–2015. Animals 11, 1453 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Dahle, B., Sørensen, O. J., Wedul, E. H., Swenson, J. E. & Sandegren, F. The diet of brown bears Ursus arctos in central Scandinavia: Effect of access to free-ranging domestic sheep Ovis aries. Wildl. Biol. 4, 147–158 (1998).

    Article 

    Google Scholar 

  • 94.

    Persson, I.-L., Wikan, S., Swenson, J. E. & Mysterud, I. The diet of the brown bear Ursus arctos in the Pasvik Valley, northeastern Norway. Wildl. Biol. 7, 27–37 (2001).

    Article 

    Google Scholar 

  • 95.

    Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).

    Article 

    Google Scholar 

  • 96.

    Rode, K. D., Robbins, C. T. & Shipley, L. A. Constraints on herbivory by grizzly bears. Oecologia 128, 62–71 (2001).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 97.

    Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).

    Article 

    Google Scholar 

  • 98.

    Orlandi, L. et al. The effects of nitrogen pollutants on the isotopic signal (δ 15N) of Ulva lactuca: Microcosm experiments. Mar. Pollut. Bull. 115, 429–435 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Fiorentino, F. et al. Epilithon δ15N signatures indicate the origins of nitrogen loading and its seasonal dynamics in a volcanic Lake. Ecol. Indic. 79, 19–27 (2017).

    Article 
    CAS 

    Google Scholar 

  • 100.

    Noyce, K. V., Kannowski, P. B. & Riggs, M. R. Black bears as ant-eaters: Seasonal associations between bear myrmecophagy and ant ecology in north-central Minnesota. Can. J. Zool. 75, 1671–1686 (1997).

    Article 

    Google Scholar 

  • 101.

    Auger, J., Ogborn, G. L., Pritchett, C. L. & Black, H. L. selection of ants by the American black bear (Ursus americanos). West. North Am. Nat. 64, 166–174 (2004).

    Google Scholar 

  • 102.

    Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. Direct observation of bear myrmecophagy: Relationship between bears’ feeding habits and ant phenology. Mamm. Biol. 78, 34–40 (2013).

    Article 

    Google Scholar 

  • 103.

    Elgmork, K. & Kaasa, J. Food habits and foraging of the brown bear Ursus arctos in central South Norway. Ecography 15, 101–110 (1992).

    Article 

    Google Scholar 

  • 104.

    Swenson, J. E., Jansson, A., Riig, R. & Sandegren, F. Bears and ants: Myrmecophagy by brown bears in central Scandinavia. Can. J. Zool. 77, 551–561 (1999).

    Article 

    Google Scholar 

  • 105.

    Costello, C. M. et al. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears. PLoS ONE 11, e0153702 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 106.

    Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildl. Biol. 22, 107–116 (2016).

    Article 

    Google Scholar 

  • 107.

    Eagle, T. C. & Pelton, M. R. Seasonal nutrition of black bears in the Great Smoky Mountains National Park. Bears Their Biol. Manag. 5, 94 (1983).

    Article 

    Google Scholar 

  • 108.

    Redford, K. H. & Dorea, J. G. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203, 385–395 (2009).

    Article 

    Google Scholar 

  • 109.

    Rode, K. D. & Robbins, C. T. Why bears consume mixed diets during fruit abundance. Can. J. Zool. 78, 1640–1645 (2000).

    Article 

    Google Scholar 

  • 110.

    Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mammal. 95, 160–168 (2014).

    Article 

    Google Scholar 

  • 111.

    Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Mealey, S. P. The natural food habits of grizzly bears in Yellowstone National Park, 1973–74. Bears Biol. Manag. 4, 281 (1980).

    Google Scholar 

  • 113.

    Cicnjak, L., Huber, D., Roth, H. U., Ruff, R. L. & Vinovrski, Z. Food habits of brown bears in Plitvice Lakes National Park, Yugoslavia. Bears Biol. Manag. 7, 221 (1987).

    Google Scholar 

  • 114.

    Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. Bears Biol. Manag. 7, 199 (1987).

    Google Scholar 

  • 115.

    McLellan, B. N. & Hovey, F. W. The diet of grizzly bears in the Flathead River drainage of southeastern British Columbia. Can. J. Zool. 73, 704–712 (1995).

    Article 

    Google Scholar 

  • 116.

    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

    Article 

    Google Scholar 

  • 117.

    Piovesan, G., Bernabei, M., Di Filippo, A., Romagnoli, M. & Schirone, B. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21, 13–22 (2003).

    Article 

    Google Scholar 

  • 118.

    Mancinelli, S., Boitani, L. & Ciucci, P. Determinants of home range size and space use patterns in a protected wolf (Canis lupus) population in the central Apennines, Italy. Can. J. Zool. 96, 828–838 (2018).

    Article 

    Google Scholar 

  • 119.

    Gervasi, V. et al. Estimating survival in the Apennine brown bear accounting for uncertainty in age classification. Popul. Ecol. 59, 119–130 (2017).

    Article 

    Google Scholar 

  • 120.

    Hopkins, J. B. et al. A proposed lexicon of terms and concepts for human–bear management in North America. Ursus 21, 154–168 (2010).

    Article 

    Google Scholar 

  • 121.

    Costantini, M. L., Calizza, E. & Rossi, L. Stable isotope variation during fungal colonisation of leaf detritus in aquatic environments. Fungal Ecol. 11, 154–163 (2014).

    Article 

    Google Scholar 

  • 122.

    Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).

    Article 

    Google Scholar 

  • 123.

    Ponsard, S. & Arditi, R. Detecting omnivory with δ15N. Trends Ecol. Evol. 16, 20–21 (2001).

    Article 

    Google Scholar 

  • 124.

    Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).

    Article 

    Google Scholar 

  • 125.

    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 126.

    McElreath, R. Statistical rethinking: a Bayesian course with examples in R and Stan (Taylor and Francis, CRC Press, 2020).

    Book 

    Google Scholar 

  • 127.

    Stock, B., Jackson, A., Ward, E. & Venkiteswaran, J. Brianstock/Mixsiar 3.1.9. (Zenodo, 2018) https://doi.org/10.5281/ZENODO.1209993.

  • 128.

    Koch, P. L. & Phillips, D. L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002). Oecologia 133, 14–18 (2002).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 129.

    Phillips, D. L. & Koch, P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 130.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).

    Article 

    Google Scholar 

  • 131.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).


  • Source: Ecology - nature.com

    Infrared cameras and artificial intelligence provide insight into boiling

    Engineering seeds to resist drought