Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14. https://doi.org/10.1111/eva.12137 (2014).
Google Scholar
Reusch, T. B. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122. https://doi.org/10.1111/eva.12109 (2014).
Google Scholar
Pazzaglia, J., Reusch, T. B., Terlizzi, A., Marín‐Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol. Appl. (2021).
Lopez-Maury, L., Marguerat, S. & Baehler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9, 583–593 (2008).
Google Scholar
Mäkinen, H., Papakostas, S., Vøllestad, L. A., Leder, E. H. & Primmer, C. R. Plastic and evolutionary gene expression responses are correlated in European grayling (Thymallus thymallus) subpopulations adapted to different thermal environments. J. Hered. 107, 82–89 (2016).
Google Scholar
Alonso, C., Pérez, R., Bazaga, P., Medrano, M. & Herrera, C. M. MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild-growing species. Mol. Ecol. Resour. 16, 80–90 (2016).
Google Scholar
Jeremias, G. et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27, 2790–2806 (2018).
Google Scholar
Nicotra, A. B. et al. Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol. Evol. 5, 634–647 (2015).
Google Scholar
Kelly, S., Panhuis, T. & Stoehr, A. (2012).
Thorson, J. L. et al. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Rey, O., Danchin, E., Mirouze, M., Loot, C. & Blanchet, S. Adaptation to global change: a transposable element–epigenetics perspective. Trends Ecol. Evol. 31, 514–526. https://doi.org/10.1016/j.tree.2016.03.013 (2016).
Google Scholar
Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
Google Scholar
Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).
Google Scholar
Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 1–19 (2016).
Google Scholar
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).
Google Scholar
Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. 113, 9111–9116 (2016).
Google Scholar
Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).
Google Scholar
Sarda, S., Zeng, J., Hunt, B. G. & Yi, S. V. The evolution of invertebrate gene body methylation. Mol. Biol. Evol. 29, 1907–1916 (2012).
Google Scholar
Takuno, S. & Gaut, B. S. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29, 219–227 (2012).
Google Scholar
Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl. Acad. Sci. 110, 1797–1802 (2013).
Google Scholar
Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 1–7 (2016).
Google Scholar
Wendte, J. M. et al. Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation. Elife 8, e47891 (2019).
Google Scholar
Aceituno, F. F., Moseyko, N., Rhee, S. Y. & Gutiérrez, R. A. The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics 9, 438 (2008).
Google Scholar
Elango, N., Hunt, B. G., Goodisman, M. A. & Soojin, V. Y. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. 106, 11206–11211 (2009).
Google Scholar
Gavery, M. R. & Roberts, S. B. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11, 1–9 (2010).
Google Scholar
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).
Google Scholar
Coleman-Derr, D. & Zilberman, D. in Cold Spring Harbor symposia on quantitative biology. 147–154 (Cold Spring Harbor Laboratory Press).
Kim, M. Y. & Zilberman, D. DNA methylation as a system of plant genomic immunity. Trends Plant Sci. 19, 320–326 (2014).
Google Scholar
Muyle, A. & Gaut, B. S. Loss of gene body methylation in Eutrema salsugineum is associated with reduced gene expression. Mol. Biol. Evol. 36, 155–158 (2019).
Google Scholar
Roberts, S. B. & Gavery, M. R. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates?. Front. Physiol. 2, 116 (2012).
Google Scholar
Dimond, J. L. & Roberts, S. B. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol. Ecol. 25, 1895–1904 (2016).
Google Scholar
Dixon, G. B., Bay, L. K. & Matz, M. V. Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics 15, 1–11 (2014).
Google Scholar
Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).
Google Scholar
Sved, J. & Bird, A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci. 87, 4692–4696 (1990).
Google Scholar
Suzuki, M. M., Kerr, A. R., De Sousa, D. & Bird, A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 17, 625–631 (2007).
Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).
Google Scholar
Glastad, K., Hunt, B. G., Yi, S. & Goodisman, M. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553–565 (2011).
Google Scholar
Aliaga, B., Bulla, I., Mouahid, G., Duval, D. & Grunau, C. Universality of the DNA methylation codes in Eucaryotes. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Asselman, J., De Coninck, D. I., Pfrender, M. E. & De Schamphelaere, K. A. Gene body methylation patterns in Daphnia are associated with gene family size. Genome Biol Evol 8, 1185–1196 (2016).
Google Scholar
Park, J. et al. Comparative analyses of DNA methylation and sequence evolution using Nasonia genomes. Mol. Biol. Evol. 28, 3345–3354 (2011).
Google Scholar
Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335. https://doi.org/10.1038/nature16548 (2016).
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).
Google Scholar
Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Correction: Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 12, e0169942 (2017).
Google Scholar
Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2 (2006).
Google Scholar
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).
Google Scholar
Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).
Google Scholar
Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).
Google Scholar
Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474. https://doi.org/10.1111/gcb.12694 (2014).
Google Scholar
Maxwell, P. S. et al. Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. J. Ecol. 102, 54–64 (2014).
Google Scholar
Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 28615. https://doi.org/10.1038/srep28615 (2016).
Google Scholar
Sandoval-Gil, J. M., Ruiz, J. M., Marin-Guirao, L., Bernardeau-Esteller, J. & Sanchez-Lizaso, J. L. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Mar. Environ. Res. 95, 39–61. https://doi.org/10.1016/j.marenvres.2013.12.011 (2014).
Google Scholar
Franssen, S. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. USA 108, 19276–19281 (2011).
Google Scholar
Jueterbock, A. et al. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass. Mol. Ecol. 25, 5396–5411 (2016).
Google Scholar
Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J. M. & Procaccini, G. Molecular mechanisms behind the physiological resistance to intense transient warming in an iconic marine plant. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01142 (2017).
Google Scholar
Lee, H. et al. The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol. (2016).
Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. Effects of light deficiency on genome methylation in Posidonia oceanica. Mar. Ecol. Prog. Ser. 473, 103–114 (2013).
Google Scholar
Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695–709. https://doi.org/10.1093/jxb/err313 (2012).
Google Scholar
Ruocco, M., De Luca, P., Marín-Guirao, L. & Procaccini, G. Differential leaf age-dependent thermal plasticity in the keystone seagrass Posidonia oceanica. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01556 (2019).
Google Scholar
Ruocco, M., Marín-Guirao, L. & Procaccini, G. Within- and among-leaf variations in photo-physiological functions, gene expression and DNA methylation patterns in the large-sized seagrass Posidonia oceanica. Mar. Biol. 166, 24. https://doi.org/10.1007/s00227-019-3482-8 (2019).
Google Scholar
Ruocco, M. et al. A king and vassals’ tale: Molecular signatures of clonal integration in Posidonia oceanica under chronic light shortage. J. Ecol. (2020).
Jueterbock, A. et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 11 (2020).
Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).
Google Scholar
Beca-Carretero, P. et al. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Mar. Pollut. Bull. 134, 27–37 (2018).
Google Scholar
Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19, 1283–1295 (2010).
Google Scholar
Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, e05255 (2015).
Google Scholar
Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).
Google Scholar
Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).
Google Scholar
Serres-Giardi, L., Belkhir, K., David, J. & Glémin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379–1397 (2012).
Google Scholar
Tatarinova, T., Elhaik, E. & Pellegrini, M. Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol. Evol. 5, 1443–1456 (2013).
Google Scholar
Vining, K. J. et al. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13, 27 (2012).
Google Scholar
Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8, 1506 (2010).
Google Scholar
Cortijo, S., Aydin, Z., Ahnert, S. & Locke, J. C. Widespread inter-individual gene expression variability in Arabidopsis thaliana. Mol. Syst. Biol. 15, e8591 (2019).
Google Scholar
Procaccini, G., Olsen, J. L. & Reusch, T. B. H. Contribution of genetics and genomics to seagrass biology and conservation. J. Exp. Mar. Biol. Ecol. 350, 234–259. https://doi.org/10.1016/j.jembe.2007.05.035 (2007).
Google Scholar
Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).
Google Scholar
Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).
Google Scholar
Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).
Google Scholar
Yi, S. V. Insights into epigenome evolution from animal and plant methylomes. Genome Biol. Evol. 9, 3189–3201 (2017).
Google Scholar
Jahnke, M. et al. Adaptive responses along a depth and a latitudinal gradient in the endemic seagrass Posidonia oceanica. Heredity https://doi.org/10.1038/s41437-018-0103-0 (2018).
Google Scholar
Tuya, F. et al. Biogeographical scenarios modulate seagrass resistance to small-scale perturbations. J. Ecol. 107, 1263–1275 (2019).
Google Scholar
Gao, G. et al. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 64, 125–133 (2014).
Google Scholar
Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. 109, E2183–E2191 (2012).
Google Scholar
Wada, Y., Miyamoto, K., Kusano, T. & Sano, H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol. Genet. Genomics 271, 658–666 (2004).
Google Scholar
Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735 (2011).
Google Scholar
Secco, D. et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife 4, e09343 (2015).
Google Scholar
Marín-Guirao, L., Entrambasaguas, L., Ruiz, J. M. & Procaccini, G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol. Ecol. 28, 2486–2501. https://doi.org/10.1111/mec.15089 (2019).
Google Scholar
Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).
Google Scholar
Pikaard, C. S. & Scheid, O. M. Epigenetic regulation in plants. Cold Spring Harbor Perspect. Biol. 6, a019315 (2014).
Google Scholar
Yu, Y. et al. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS ONE 8, e55772 (2013).
Google Scholar
Liu, R. & Lang, Z. The mechanism and function of active DNA demethylation in plants. J. Integr. Plant. Biol. 62, 148–159 (2020).
Google Scholar
Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discovery 2, 1–12 (2016).
Arnaud-Haond, S. et al. Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 7, e30454. https://doi.org/10.1371/journal.pone.0030454 (2012).
Google Scholar
Mascaró, O., Romero, J. & Pérez, M. Seasonal uncoupling of demographic processes in a marine clonal plant. Estuar. Coast. Shelf Sci. 142, 23–31 (2014).
Google Scholar
Olesen, B., Enríquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser. 236, 89–97. https://doi.org/10.3354/meps236089 (2002).
Google Scholar
Ruocco, M. et al. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Mol. Ecol. 26, 4241–4259. https://doi.org/10.1111/mec.14204 (2017).
Google Scholar
Fraley, C. & Raftery, A. E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 18, 1–13 (2007).
Google Scholar
R Core Team (ISBN 3-900051-07-0, 2012).
Benaglia, T., Chauveau, D., Hunter, D., Young, D. mixtools: an R package for analyzing finite mixture models (2009).
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
Google Scholar
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformat. 12, 323 (2011).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).
Google Scholar
Source: Ecology - nature.com