in

Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress

  • 1.

    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14. https://doi.org/10.1111/eva.12137 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Reusch, T. B. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122. https://doi.org/10.1111/eva.12109 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Pazzaglia, J., Reusch, T. B., Terlizzi, A., Marín‐Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol. Appl. (2021).

  • 4.

    Lopez-Maury, L., Marguerat, S. & Baehler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9, 583–593 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Mäkinen, H., Papakostas, S., Vøllestad, L. A., Leder, E. H. & Primmer, C. R. Plastic and evolutionary gene expression responses are correlated in European grayling (Thymallus thymallus) subpopulations adapted to different thermal environments. J. Hered. 107, 82–89 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Alonso, C., Pérez, R., Bazaga, P., Medrano, M. & Herrera, C. M. MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild-growing species. Mol. Ecol. Resour. 16, 80–90 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Jeremias, G. et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27, 2790–2806 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Nicotra, A. B. et al. Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol. Evol. 5, 634–647 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Kelly, S., Panhuis, T. & Stoehr, A. (2012).

  • 10.

    Thorson, J. L. et al. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci. Rep. 7, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Rey, O., Danchin, E., Mirouze, M., Loot, C. & Blanchet, S. Adaptation to global change: a transposable element–epigenetics perspective. Trends Ecol. Evol. 31, 514–526. https://doi.org/10.1016/j.tree.2016.03.013 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 14.

    Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 1–19 (2016).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. 113, 9111–9116 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Sarda, S., Zeng, J., Hunt, B. G. & Yi, S. V. The evolution of invertebrate gene body methylation. Mol. Biol. Evol. 29, 1907–1916 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Takuno, S. & Gaut, B. S. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29, 219–227 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl. Acad. Sci. 110, 1797–1802 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 21.

    Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 1–7 (2016).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Wendte, J. M. et al. Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation. Elife 8, e47891 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Aceituno, F. F., Moseyko, N., Rhee, S. Y. & Gutiérrez, R. A. The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics 9, 438 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Elango, N., Hunt, B. G., Goodisman, M. A. & Soojin, V. Y. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. 106, 11206–11211 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Gavery, M. R. & Roberts, S. B. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11, 1–9 (2010).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Coleman-Derr, D. & Zilberman, D. in Cold Spring Harbor symposia on quantitative biology. 147–154 (Cold Spring Harbor Laboratory Press).

  • 28.

    Kim, M. Y. & Zilberman, D. DNA methylation as a system of plant genomic immunity. Trends Plant Sci. 19, 320–326 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Muyle, A. & Gaut, B. S. Loss of gene body methylation in Eutrema salsugineum is associated with reduced gene expression. Mol. Biol. Evol. 36, 155–158 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Roberts, S. B. & Gavery, M. R. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates?. Front. Physiol. 2, 116 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Dimond, J. L. & Roberts, S. B. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol. Ecol. 25, 1895–1904 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Dixon, G. B., Bay, L. K. & Matz, M. V. Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics 15, 1–11 (2014).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Sved, J. & Bird, A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci. 87, 4692–4696 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 35.

    Suzuki, M. M., Kerr, A. R., De Sousa, D. & Bird, A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 17, 625–631 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Glastad, K., Hunt, B. G., Yi, S. & Goodisman, M. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553–565 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Aliaga, B., Bulla, I., Mouahid, G., Duval, D. & Grunau, C. Universality of the DNA methylation codes in Eucaryotes. Sci. Rep. 9, 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Asselman, J., De Coninck, D. I., Pfrender, M. E. & De Schamphelaere, K. A. Gene body methylation patterns in Daphnia are associated with gene family size. Genome Biol Evol 8, 1185–1196 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Park, J. et al. Comparative analyses of DNA methylation and sequence evolution using Nasonia genomes. Mol. Biol. Evol. 28, 3345–3354 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335. https://doi.org/10.1038/nature16548 (2016).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 42.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).

    Article 

    Google Scholar 

  • 43.

    Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Correction: Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 12, e0169942 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2 (2006).

    Article 

    Google Scholar 

  • 45.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 46.

    Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).

    Article 
    ADS 

    Google Scholar 

  • 47.

    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).

    Article 
    ADS 

    Google Scholar 

  • 48.

    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474. https://doi.org/10.1111/gcb.12694 (2014).

    Article 
    ADS 

    Google Scholar 

  • 49.

    Maxwell, P. S. et al. Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. J. Ecol. 102, 54–64 (2014).

    Article 

    Google Scholar 

  • 50.

    Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 28615. https://doi.org/10.1038/srep28615 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 51.

    Sandoval-Gil, J. M., Ruiz, J. M., Marin-Guirao, L., Bernardeau-Esteller, J. & Sanchez-Lizaso, J. L. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Mar. Environ. Res. 95, 39–61. https://doi.org/10.1016/j.marenvres.2013.12.011 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Franssen, S. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. USA 108, 19276–19281 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 53.

    Jueterbock, A. et al. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass. Mol. Ecol. 25, 5396–5411 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J. M. & Procaccini, G. Molecular mechanisms behind the physiological resistance to intense transient warming in an iconic marine plant. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01142 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Lee, H. et al. The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol. (2016).

  • 56.

    Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. Effects of light deficiency on genome methylation in Posidonia oceanica. Mar. Ecol. Prog. Ser. 473, 103–114 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 57.

    Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695–709. https://doi.org/10.1093/jxb/err313 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Ruocco, M., De Luca, P., Marín-Guirao, L. & Procaccini, G. Differential leaf age-dependent thermal plasticity in the keystone seagrass Posidonia oceanica. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01556 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Ruocco, M., Marín-Guirao, L. & Procaccini, G. Within- and among-leaf variations in photo-physiological functions, gene expression and DNA methylation patterns in the large-sized seagrass Posidonia oceanica. Mar. Biol. 166, 24. https://doi.org/10.1007/s00227-019-3482-8 (2019).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Ruocco, M. et al. A king and vassals’ tale: Molecular signatures of clonal integration in Posidonia oceanica under chronic light shortage. J. Ecol. (2020).

  • 61.

    Jueterbock, A. et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 11 (2020).

  • 62.

    Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Beca-Carretero, P. et al. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Mar. Pollut. Bull. 134, 27–37 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19, 1283–1295 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, e05255 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Serres-Giardi, L., Belkhir, K., David, J. & Glémin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379–1397 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Tatarinova, T., Elhaik, E. & Pellegrini, M. Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol. Evol. 5, 1443–1456 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Vining, K. J. et al. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13, 27 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8, 1506 (2010).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Cortijo, S., Aydin, Z., Ahnert, S. & Locke, J. C. Widespread inter-individual gene expression variability in Arabidopsis thaliana. Mol. Syst. Biol. 15, e8591 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Procaccini, G., Olsen, J. L. & Reusch, T. B. H. Contribution of genetics and genomics to seagrass biology and conservation. J. Exp. Mar. Biol. Ecol. 350, 234–259. https://doi.org/10.1016/j.jembe.2007.05.035 (2007).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).

    Article 

    Google Scholar 

  • 75.

    Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 76.

    Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 77.

    Yi, S. V. Insights into epigenome evolution from animal and plant methylomes. Genome Biol. Evol. 9, 3189–3201 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Jahnke, M. et al. Adaptive responses along a depth and a latitudinal gradient in the endemic seagrass Posidonia oceanica. Heredity https://doi.org/10.1038/s41437-018-0103-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Tuya, F. et al. Biogeographical scenarios modulate seagrass resistance to small-scale perturbations. J. Ecol. 107, 1263–1275 (2019).

    Article 

    Google Scholar 

  • 80.

    Gao, G. et al. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 64, 125–133 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. 109, E2183–E2191 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Wada, Y., Miyamoto, K., Kusano, T. & Sano, H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol. Genet. Genomics 271, 658–666 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Secco, D. et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife 4, e09343 (2015).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 85.

    Marín-Guirao, L., Entrambasaguas, L., Ruiz, J. M. & Procaccini, G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol. Ecol. 28, 2486–2501. https://doi.org/10.1111/mec.15089 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 86.

    Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Pikaard, C. S. & Scheid, O. M. Epigenetic regulation in plants. Cold Spring Harbor Perspect. Biol. 6, a019315 (2014).

    Article 
    CAS 

    Google Scholar 

  • 88.

    Yu, Y. et al. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS ONE 8, e55772 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 89.

    Liu, R. & Lang, Z. The mechanism and function of active DNA demethylation in plants. J. Integr. Plant. Biol. 62, 148–159 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discovery 2, 1–12 (2016).

    Google Scholar 

  • 91.

    Arnaud-Haond, S. et al. Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 7, e30454. https://doi.org/10.1371/journal.pone.0030454 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 92.

    Mascaró, O., Romero, J. & Pérez, M. Seasonal uncoupling of demographic processes in a marine clonal plant. Estuar. Coast. Shelf Sci. 142, 23–31 (2014).

    Article 
    ADS 

    Google Scholar 

  • 93.

    Olesen, B., Enríquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser. 236, 89–97. https://doi.org/10.3354/meps236089 (2002).

    Article 
    ADS 

    Google Scholar 

  • 94.

    Ruocco, M. et al. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Mol. Ecol. 26, 4241–4259. https://doi.org/10.1111/mec.14204 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 95.

    Fraley, C. & Raftery, A. E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 18, 1–13 (2007).

    Article 

    Google Scholar 

  • 96.

    R Core Team (ISBN 3-900051-07-0, 2012).

  • 97.

    Benaglia, T., Chauveau, D., Hunter, D., Young, D. mixtools: an R package for analyzing finite mixture models (2009).

  • 98.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 99.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformat. 12, 323 (2011).

    CAS 
    Article 

    Google Scholar 

  • 100.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice