Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat fragmentation in the temperate zone. Conserv. Biol. 6, 237–256 (1986).
Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 114, 7635–7640 (2017).
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2011).
Google Scholar
Okie, J. G. & Brown, J. H. Niches, body sizes, and the disassembly of mammal communities on the Sunda Shelf islands. Proc. Natl. Acad. Sci. USA 106, 19679–19684 (2009).
Google Scholar
Viveiros De Castro, E. B. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73–80 (2004).
Google Scholar
Feeley, K. J. & Terborgh, J. W. Direct versus indirect effects of habitat reduction on the loss of avian species from tropical forest fragments. Anim. Conserv. 11, 353–360 (2008).
Google Scholar
Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 105, 20770–20775 (2008).
Google Scholar
Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).
Google Scholar
Janecka, J. E. et al. Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv. Genet. 17, 1093–1108 (2016).
Google Scholar
Creel, S. Four factors modifying the effect of competition on Carnivore population dynamics as illustrated by African wild dogs. Conserv. Biol. 15, 271–274 (2001).
Google Scholar
Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).
Sanderson, C. E., Jobbins, S. E. & Alexander, K. A. With Allee effects, life for the social carnivore is complicated. Popul. Ecol. 56, 417–425 (2014).
Google Scholar
Kamler, J. F. et al. Cuon alpinus. The IUCN Red List of Threatened Species 2015: e.T5953A72477893. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).
Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the endangered dhole cuon alpinus in the high elevation eastern himalayan habitats of khangchendzonga biosphere reserve, Sikkim, India. Oryx 48, 125–132 (2014).
Google Scholar
Pal, R., Thakur, S., Arya, S., Bhattacharya, T. & Sathyakumar, S. Recent records of dhole (Cuon alpinus, Pallas 1811) in Uttarakhand, Western Himalaya, India. Mammalia 82, 614–617 (2018).
Google Scholar
Karanth, K. K., Nichols, J. D., UllasKaranth, K., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).
Google Scholar
Keyghobadi, N. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85, 1049–1064 (2007).
Google Scholar
Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).
Google Scholar
Ghaskadbi, P., Habib, B. & Qureshi, Q. A whistle in the woods: An ethogram and activity budget for the dhole in central India. J. Mammal. 97, 1745–1752 (2016).
Google Scholar
Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger (Panthera tigiris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J. Zool. Lond. 250, 255–265 (2000).
Google Scholar
Johnsingh, A. J. T. Reproduction and social behaviour of the dhole, Cuon alpinus (Canidae). J. Zool. 198, 443–463 (1982).
Google Scholar
Ngoprasert, D. & Gale, G. A. Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen—Khao Yai Forest Complex, Thailand. Mammal. Biol. 95, 51–58 (2019).
Google Scholar
Selvan, K. M., Lyngdoh, S., Habib, B. & Gopi, G. V. Population density and abundance of sympatric large carnivores in the lowland tropical evergreen forest of Indian Eastern Himalayas. Mammal. Biol. 79, 254–258 (2014).
Google Scholar
Jenks, K. E. et al. Comparative movement analysis for a sympatric dhole and golden jackal in a human-dominated landscape. Raffles Bull. Zool. 63, 546–554 (2015).
Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).
Google Scholar
Modi, S. et al. Noninvasive DNA-based species and sex identification of Asiatic wild dog (Cuonalpinus). J. Genet. 97, 1457–1461 (2018).
Google Scholar
Iyengar, A. et al. Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Mol. Ecol. 14, 2281–2297 (2005).
Google Scholar
Durbin, L., Venkataraman, A. & Hedges, S. D. J. Dhole (Cuon alpinus). In Status Survery and Conservation Action Plan. Canids: Foxes, Wolves, Jackals and Dogs (eds. Sillero-Zubiri, C., Hoffman, M. & Macdonald, D. W.) 210–219 (2004).
Smith, O. & Wang, J. When can noninvasive samples provide sufficient information in conservation genetics studies?. Mol. Ecol. Resour. 14, 1011–1023 (2014).
Google Scholar
Godinho, R. et al. Real-time assessment of hybridization between wolves and dogs: Combining noninvasive samples with ancestry informative markers. Mol. Ecol. Resour. 15, 317–328 (2015).
Google Scholar
Venkataraman, A. B., Arumugam, R. & Sukumar, R. The foraging ecology of dhole (Cuon alpinus) in Mudumalai Sanctuary, southern India. J. Zool. 237, 543–561 (1995).
Google Scholar
Srivathsa, A., Karanth, K. U., Kumar, N. S. & Oli, M. K. Insights from distribution dynamics inform strategies to conserve a dhole Cuon alpinus metapopulation in India. Sci. Rep. 9, 1–12 (2019).
Google Scholar
Reddy, C. S., Sreelekshmi, S., Jha, C. S. & Dadhwal, V. K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 60, 453–464 (2013).
Google Scholar
Dutta, T., Sharma, S. & DeFries, R. Targeting restoration sites to improve connectivity in a tiger conservation landscape in India. PeerJ 6, e5587 (2018).
Google Scholar
Mondal, I., Habib, B., Talukdar, G. & Nigam, P. Triage of means: Options for conserving tiger corridors beyond designated protected lands in India. Front. Ecol. Evol. 4, 2–7 (2016).
Google Scholar
Lowther, A. D., Harcourt, R. G., Goldsworthy, S. D. & Stow, A. Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim. Behav. 83, 691–701 (2012).
Google Scholar
Marsden, C. D. et al. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol. Ecol. 21, 1379–1393 (2012).
Google Scholar
Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9 (2014).
Dutta, T. et al. Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers. Distrib. 19, 760–771 (2013).
Google Scholar
Thatte, P. et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 26, 299–314 (2020).
Google Scholar
Slatkin M. Gene flow and population structure. Ecol. Genet. 3–17 (1994).
Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing effect of Prey availability and Apex predator. Ecol. Evol. 00, 1–12 (2021).
Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments?. Ecology 81, 1450–1461 (2000).
Google Scholar
Bhatt, S., Biswas, S., Karanth, K., Pandav, B. & Mondol, S. Genetic analyses reveal population structure and recent decline in leopards (Panthera pardus fusca) across the Indian subcontinent. PeerJ 8, e8482 (2020).
Google Scholar
Mondol, S., Karanth, K. U. & Ramakrishnan, U. Why the Indian subcontinent holds the key to global tiger recovery. PLoS Genet. 5 (2009).
Nijman, V. et al. Illegal wildlife trade–surveying open animal markets and online platforms to understand the poaching of wild cats. Biodiversity 20, 58–61 (2019).
Google Scholar
Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal. Rev. 50, 399–412 (2020).
Google Scholar
Richards, J. F. & Elizabeth, P. F. A century of land-use change in South and Southeast Asia. In Effects of land-use change on atmospheric CO2 concentrations 15–66 (1994).
Goldewijk, K. K. & Ramankutty, N. Land use changes during the past 300 years (EOLSS Publisher Co., 2009).
Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 14 (2013).
Rangarajan, M. Fencing the forest: Conservation and ecological change in India’s central provinces 1860–1914 (1999).
Gadgil, M. Towards an ecological history of India. Econ. Pol. Wkly. 20, 1909–1911 (2011).
Bebarta, K. C. Teak; ecology, silviculture, management and profitability (International Book Distributors, 1999).
Waples, R. S. & England, P. R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189, 633–644 (2011).
Google Scholar
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).
Google Scholar
de Manuel, M. et al. The evolutionary history of extinct and living lions. Proc. Natl. Acad. Sci. USA 117, 10927–10934 (2020).
Google Scholar
Creel, S. Social organization and effective population size in carnivores. Behav. Ecol. Conserv. Biol. 264–265 (1998).
Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable Popul. Conserv. 87–123 (1987).
Neel, M. C. et al. Estimation of effective population size in continuously distributed populations: There goes the neighborhood. Heredity 111, 189–199 (2013).
Google Scholar
Girman, D. J. et al. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol. Ecol. 10, 1703–1723 (2001).
Google Scholar
Sacks, B. N., Mitchell, B. R., Williams, C. L. & Ernest, H. B. Coyote movements and social structure along a cryptic population genetic subdivision. Mol. Ecol. 14, 1241–1249 (2005).
Google Scholar
Stronen, A. V. et al. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche. BMC Ecol. 14, 1–9 (2014).
Google Scholar
Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4 (2017).
Walston, J. et al. Bringing the tiger back from the brink-the six percent solution. PLoS Biol. 8, 6–9 (2010).
Google Scholar
Champion, H. G. & Seth, S. K. A revised survey of the forest types of India. (Manager of Publications, 1968).
Biswas, S. et al. A practive faeces collection protocol for multidisciplinary research in wildlife science. Curr. Sci. 116, 1878 (2019).
Google Scholar
Hallsworth, J. E., Nomura, Y. & Iwahara, M. Ethanol-induced water stress and fungal growth. J. Ferment. Bioeng. 86, 451–456 (1998).
Google Scholar
van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).
Google Scholar
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
Google Scholar
Waits, L., Taberlet, P. & Luikart, G. Estimating the probability of identity among genotypesin natural populations: Cautions and guidelines. Mol. Ecol. 10, 249–256 (2001).
Google Scholar
Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinf. 1, 117693430500100 (2005).
Pritchard, J. K. & Stephens, M. D. M. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
Google Scholar
Caye, K., Deist, T. M., Martins, H., Michel, O. & François, O. TESS3: Fast inference of spatial population structure and genome scans for selection. Mol. Ecol. Resour. 16, 540–548 (2016).
Google Scholar
Jombart, T. et al. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
Google Scholar
Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Google Scholar
Jombart, T., Devillard, S., Dufour, A. B. & Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).
Google Scholar
Thioulouse, J., Chessel, D. & Champely, S. Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ. Ecol. Stat. 2, 1–14 (1995).
Google Scholar
Moran, P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B Stat. Methodol. 10, 243–251 (1948).
Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).
Google Scholar
Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
Google Scholar
Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
Google Scholar
Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).
Google Scholar
Ryman, N. & Leimar, O. GST is still a useful measure of genetic differentiation—A comment on Jost’s D. Mol. Ecol. 18, 2084–2087 (2009).
Google Scholar
Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).
Google Scholar
Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
Google Scholar
Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16, 1149–1166 (2007).
Google Scholar
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
Google Scholar
Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).
Google Scholar
Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
Google Scholar
Nikolic, N. & Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 7, 663–681 (2014).
Google Scholar
Kimura, M. & Ohta, T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75, 2868–2872 (1978).
Google Scholar
Ruiz-Garcia, M. et al. Determination of microsatellite DNA mutation rates, mutation models and mutation bias in four main Felidae lineages (European wild cat, F. silvestris; ocelot, Leopardus pardalis; puma, Puma concolor; jaguar, Panthera onca). In Molecular Population Genetics, Evolutionary Biology & Biological Conservation of Neotropical Carnivores. (Nova Science Publishers Inc., New York, 2013).
Xu, X., Peng, M., Fang, Z. & Xu, X. The direction of microsatellite mutations is dependent upon allele length. Nat. Genet. 24, 396–399 (2000).
Google Scholar
Source: Ecology - nature.com