Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).
Google Scholar
Hewitt, G. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).
Google Scholar
Ehlers, J. & Gibbard, P. Quaternary Glaciations-Extent and Chronology: Part I: Europe Vol. 2 (Elsevier, New York, 2004).
Call, A. et al. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): Integrative evidence from phylogeography, population demographic history, and species distribution modeling. J. Syst. Evol. 54, 136–151. https://doi.org/10.1111/jse.12171 (2016).
Google Scholar
Jackson, S. et al. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quatern. Sci. Rev. 19, 489–508. https://doi.org/10.1016/S0277-3791(99)00093-1 (2000).
Google Scholar
Nadeau, S. et al. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: A comparison between eastern and western North American postglacial colonization histories. Am. J. Bot. 102, 1342–1355. https://doi.org/10.3732/ajb.1500160 (2015).
Google Scholar
Beaulieu, J. & Simon, J. Genetic structure and variability in Pinus strobus in Quebec. Can. J. For. Res. 24, 1726–1733. https://doi.org/10.1139/x94-223 (1994).
Google Scholar
Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).
Google Scholar
Soltis, D., Morris, A., McLachlan, J., Manos, P. & Soltis, P. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x (2006).
Google Scholar
Mee, J. & Moore, J. The ecological and evolutionary implications of microrefugia. J. Biogeogr. 41, 837–841. https://doi.org/10.1111/jbi.12254 (2014).
Google Scholar
Hoban, S. et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19, 4876–4891. https://doi.org/10.1111/j.1365-294X.2010.04834.x (2010).
Google Scholar
Hampe, A. & Petit, R. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).
Google Scholar
Excoffier, L., Foll, M. & Petit, R. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 (2009).
Google Scholar
McLachlan, J., Clark, J. & Manos, P. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098. https://doi.org/10.1890/04-1036 (2005).
Google Scholar
Bemmels, J. & Dick, C. Genomic evidence of a widespread southern distribution during the Last Glacial Maximum for two eastern North American hickory species. J. Biogeogr. 45, 1739–1750. https://doi.org/10.1111/jbi.13358 (2018).
Google Scholar
Jaramillo-Correa, J., Beaulieu, J., Khasa, D. & Bousquet, J. Inferring the past from the present phylogeographic structure of North American forest trees: Seeing the forest for the genes. Can. J. For. Res. 39, 286–307. https://doi.org/10.1139/X08-181 (2009).
Google Scholar
Eckert, C., Samis, K. & Lougheed, S. Genetic variation across species’ geographical ranges: The central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).
Google Scholar
Foll, M. & Gaggiotti, O. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891. https://doi.org/10.1534/genetics.106.059451 (2006).
Google Scholar
Loveless, M. & Hamrick, J. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65–95. https://doi.org/10.1146/annurev.es.15.110184.000433 (1984).
Google Scholar
Roberts, D., Werner, D., Wadl, P. & Trigiano, R. Inheritance and allelism of morphological traits in eastern redbud (Cercis canadensis L.). Hortic. Res. 2, 1–11 (2015).
Google Scholar
Couvillon, G. Cercis canadensis L. seed size influences germination rate, seedling dry matter, and seedling leaf area. HortScience 37, 206–207 (2002).
Google Scholar
Li, S. et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds. Seed Sci. Technol. 41, 27–35 (2013).
Google Scholar
Cheong, E. & Pooler, M. Micropropagation of Chinese redbud (Cercis yunnanensis) through axillary bud breaking and induction of adventitious shoots from leaf pieces. In Vitro Cell. Dev. Biol. Plant 39, 455–458 (2003).
Google Scholar
Pooler, M., Jacobs, K. & Kramer, M. Differential resistance to Botryosphaeria ribis among Cercis taxa. Plant Dis. 86, 880–882. https://doi.org/10.1094/PDIS.2002.86.8.880 (2002).
Google Scholar
Trigiano, R., Beaty, R. & Graham, E. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7, 148–150. https://doi.org/10.1007/BF00270127 (1988).
Google Scholar
Wadl, P., Trigiano, R., Werner, D., Pooler, M. & Rinehart, T. Simple sequence repeat markers from Cercis canadensis show wide cross-species transfer and use in genetic studies. J. Am. Soc. Hortic. Sci. 137, 189–201. https://doi.org/10.21273/JASHS.137.3.189 (2012).
Google Scholar
Ony, M. et al. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol. Evol. 10, 3655–3670. https://doi.org/10.1002/ece3.6141 (2020).
Google Scholar
Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Resour. 7, 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2007).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).
Google Scholar
Kamvar, Z., Brooks, J. & Grünwald, N. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).
Google Scholar
Tsui, C. et al. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol. Ecol. 21, 71–86. https://doi.org/10.1111/j.1365-294X.2011.05366.x (2012).
Google Scholar
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27, 379–423 (1948).
Google Scholar
Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).
Google Scholar
Hurlbert, S. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586. https://doi.org/10.2307/1934145 (1971).
Google Scholar
El Mousadik, A. & Petit, R. High level of genetic differentiation for allelic richness among populations of the Argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839. https://doi.org/10.1007/BF00221895 (1996).
Google Scholar
Bird, C., Karl, S., Smouse, P. & Toonen, R. In Phylogeography and Population Genetics in Crustacea Vol. 19 (eds Held Christoph, Koenemann Stefan, & Schubart Christoph) pp. 31–55 (Boca Raton, FL: CRC Press, 2011).
Meirmans, P. & Hedrick, P. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).
Google Scholar
Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Earl, D. & Bridgett, V. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Google Scholar
Francis, R. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2017).
Google Scholar
Becker, R. & Wilks, A. MAPS: An R Package to Drae Geographical Maps (Version package 3.3.0, 2018).
Lemon, J. Plotrix: An R Package for Various Plotting Functions (Version R package 3.8–1, 2006).
Bruvo, R., Michiels, N., D’souza, T. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106. https://doi.org/10.1111/j.1365-294X.2004.02209.x (2004).
Google Scholar
Grünwald, N., Everhart, S., Knaus, B. & Kamvar, Z. Best practices for population genetic analyses. Phytopathology 107, 1000–1010. https://doi.org/10.1094/PHYTO-12-16-0425-RVW (2017).
Google Scholar
Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3072. https://doi.org/10.1093/bioinformatics/btr521 (2011).
Google Scholar
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 9. https://doi.org/10.1186/1471-2156-11-94 (2010).
Google Scholar
Cullingham, C., Cooke, J. & Coltman, D. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: Lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana). Genome 56, 577–585. https://doi.org/10.1139/gen-2013-0071 (2013).
Google Scholar
Diniz-Filho, J. et al. Mantel test in population genetics. Genet. Mol. Biol. 36, 475–485. https://doi.org/10.1590/S1415-47572013000400002 (2013).
Google Scholar
Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).
Google Scholar
Vegan: Community ecology package v. R package version 2.5–3 (R package version 2.5–3). (2018).
Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
Google Scholar
Cornuet, J., Ravigné, V. & Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform. 11, 401–411. https://doi.org/10.1186/1471-2105-11-401 (2010).
Google Scholar
Cornuet, J. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).
Google Scholar
Dickson, J. In Silvics of North America Vol. 2 (eds Burns, R. & Honkala, B.) 266–269 (United States Department of Agriculture-Forest Service, 1990).
Thomson, A., Dick, C. & Dayanandan, S. A similar phylogeographical structure among sympatric North American birches (Betula) is better explained by introgression than by shared biogeographical history. J. Biogeogr. 42, 339–350. https://doi.org/10.1111/jbi.12394 (2015).
Google Scholar
Petit, R. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).
Google Scholar
David, R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B Biol. Sci. 282, 20142903. https://doi.org/10.1098/rspb.2014.2903 (2015).
Google Scholar
Lumibao, C., Hoban, S. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468. https://doi.org/10.1111/ele.12853 (2017).
Google Scholar
Bialozyt, R., Ziegenhagen, B. & Petit, R. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20. https://doi.org/10.1111/j.1420-9101.2005.00995.x (2006).
Google Scholar
Petit, R. Early insights into the genetic consequences of range expansions. Heredity 106, 203–204. https://doi.org/10.1038/hdy.2010.60 (2011).
Google Scholar
Dubreuil, M. et al. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 97, 303–310. https://doi.org/10.3732/ajb.0900148 (2010).
Google Scholar
Hamrick, J., Godt, M. & Sherman-Broyles, S. In Population Genetics of Forest Trees Vol. 42 (eds Adams, W., Strauss, S., Copes, D. & Griffin, A) 95–124 (Springer, Dordrecht, 1992).
Hamrick, J. & Godt, M. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1291–1298 (1996).
Google Scholar
Spaulding, H. & Rieske, L. The aftermath of an invasion: Structure and composition of central appalachian hemlock forests following establishment of the hemlock woolly adelgid, Aelges tsugae. Biol. Invasions 12, 3135–3143. https://doi.org/10.1007/s10530-010-9704-0 (2010).
Google Scholar
Hadziabdic, D. et al. Analysis of genetic diversity in flowering dogwood natural stands using microsatellites: The effects of dogwood anthracnose. Genetica 138, 1047–1057. https://doi.org/10.1007/s10709-010-9490-8 (2010).
Google Scholar
Marquardt, P., Echt, C., Epperson, B. & Pubanz, D. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 37, 2652–2662 (2007).
Google Scholar
Potter, K. et al. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv. Genet. 13, 475–498. https://doi.org/10.1007/s10592-011-0301-2 (2012).
Google Scholar
Thammina, C., Kidwell-Slak, D., Lura, S. & Pooler, M. SSR markers reveal the genetic diversity of asian Cercis taxa at the US National Arboretum. HortScience 52, 498–502. https://doi.org/10.21273/hortsci11441-16 (2017).
Google Scholar
Chang, C., Bongarten, B. & Hamrick, J. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. J. Plant Res. 111, 17–24. https://doi.org/10.1007/BF02507146.pdf (1998).
Google Scholar
Marquardt, P. & Epperson, B. Spatial and population genetic structure of microsatellites in white pine. Mol. Ecol. 13, 3305–3315. https://doi.org/10.1111/j.1365-294X.2004.02341.x (2004).
Google Scholar
Victory, E., Glaubitz, J., Rhodes-Jr, O. & Woeste, K. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 93, 118–126. https://doi.org/10.3732/ajb.93.1.118 (2006).
Google Scholar
Hadziabdic, D. et al. Genetic diversity of flowering dogwood in the Great Smoky Mountains National Park. Tree Genet. Genomes 8, 855–871. https://doi.org/10.1007/s11295-012-0471-1 (2012).
Google Scholar
Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x (2004).
Google Scholar
Donselman, H. Variation in native populations of eastern redbud (Cercis canadensis L.) as influenced by geographic location [USA]. In Proceedings, of the Florida State Horticulture Society Vol. 89. 370–373 (1976).
Dirr, M. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses (Stipes Publishing Co, Champaign, 1990).
Fritsch, P., Schiller, A. & Larson, K. Taxonomic implications of morphological variation in Cercis canadensis (Fabaceae) from Mexico and adjacent parts of Texas. Syst. Bot. 34, 510–520. https://doi.org/10.1600/036364409789271254 (2009).
Google Scholar
Nevo, E. et al. Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at evolution canyon, Israel. Israel J. Plant Sci. 48, 33–46 (2000).
Fritsch, P. et al. Leaf adaptations and species boundaries in North American Cercis: Implications for the evolution of dry floras. Am. J. Bot. 105, 1577–1594. https://doi.org/10.1002/ajb2.1155 (2018).
Google Scholar
Raulston, J. Redbud. Am. Nurseryman 171, 39–51 (1990).
Robertson, K. Cercis: The redbuds. Arnoldia 36, 37–49 (1976).
Davis, C., Fritsch, P., Li, J. & Donoghue, M. Phylogeny and biogeography of Cercis (Fabaceae): Evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst. Bot. 27, 289–302. https://doi.org/10.1043/0363-6445-27.2.289 (2002).
Google Scholar
Hopkins, M. In Rhodora Vol. 44 (eds M Fernald, C Eatherby, L Griscom, & S Marris) 193–211 (New England Botanical Club, Inc., 1942).
Griffin, J., Ranney, T. & Pharr, D. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Am. Soc. Hortic. Sci. 129, 497–502. https://doi.org/10.21273/JASHS.129.4.0497 (2004).
Google Scholar
Fritsch, P. & Cruz, B. Phylogeny of Cercis based on DNA sequences of nuclear ITS and four plastid regions: Implications for transatlantic historical biogeography. Mol. Phylogenet. Evol. 62, 816–825. https://doi.org/10.1016/j.ympev.2011.11.016 (2012).
Google Scholar
Chung, M., Chung, M., Oh, G. & Epperson, B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85, 490–497. https://doi.org/10.1046/j.1365-2540.2000.00781.x (2000).
Google Scholar
Dean, D. et al. Analysis of genetic diversity and population structure for the native tree Viburnum rufidulum occurring in Kentucky and Tennessee. J. Am. Soc. Hortic. Sci. 140, 523–531. https://doi.org/10.21273/JASHS.140.6.523 (2015).
Google Scholar
Hagler, J., Mueller, S., Teuber, L., Machtley, S. & Van-Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144. https://doi.org/10.1673/031.011.14401 (2011).
Google Scholar
Pasquet, R. et al. Long-distance pollesn flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. 105, 13456–13461 (2008).
Google Scholar
Hayden, W. Redbud seedpods hold surprises. Bull. Virginia Native Plant Soc. 32, 1–6 (2013).
Schnabel, A., Laushman, R. & Hamrick, J. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67, 357–364. https://doi.org/10.1038/hdy.1991.99 (1991).
Google Scholar
Nakanishi, A., Tomaru, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. Effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Heredity 102, 182–189. https://doi.org/10.1038/hdy.2008.101 (2008).
Google Scholar
Vekemans, X. & Hardy, O. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).
Google Scholar
Gonzales, E., Hamrick, J., Smouse, P., Trapnell, D. & Peakall, R. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J. Hered. 101, 133–143. https://doi.org/10.1093/jhered/esp101 (2009).
Google Scholar
Post, D. Change in nutrient content of foods stored by eastern woodrats (Neotoma floridana). J. Mammal. 73, 835–839 (1992).
Google Scholar
Surrency, D. & Owsley, C. (ed. Natural Resources Conservation Service United States Department of Agriculture) 146 (United States Department of Agriculture, Natural Resources Conservation Service, 2001).
Wakeland, B. & Swihart, R. Ratings of white-tailed deer preferences for woody browse in Indiana. Proceedings of the Indiana Academy of Science 118, 96–101 (2009).
Wright, V., Fleming, E. & Post, D. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae) on fruits and seeds collected from woodrat nests in Kansas. J. Kansas Entomol. Soc. 63, 344–347 (1990).
Sullivan, J. (ed. Forest Service U.S. Department of Agriculture, Rocky Mountain Research Station) (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fire Sciences Laboratory, 1994).
Weir, B. & Ott, J. Genetic data analysis II. Trends Genet. 13, 379 (1997).
Google Scholar
Magni, C., Ducousso, A., Caron, H., Petit, R. & Kremer, A. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14, 513–524. https://doi.org/10.1111/j.1365-294X.2005.02400.x (2005).
Google Scholar
Peterson, B. & Graves, W. Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the Last Glacial Maximum in eastern North America. Journal of Biogeography 43, 314–327, doi:https://doi.org/10.1111/jbi.12621 (2016).
Shaw, J. & Small, R. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92, 2011–2030. https://doi.org/10.3732/ajb.92.12.2011 (2005).
Google Scholar
Rowe, K., Heske, E., Brown, P. & Paige, K. Surviving the ice: Northern refugia and postglacial colonization. Proc. Natl. Acad. Sci. 101, 10355–10359 (2004).
Google Scholar
Graignic, N., Tremblay, F. & Bergeron, Y. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall). Ecol. Evol. 8, 2766–2780. https://doi.org/10.1002/ece3.3906 (2018).
Google Scholar
Bemmels, J., Knowles, L. & Dick, C. Genomic evidence of survival near ice sheet margins for some, but not all, North American trees. Proc. Natl. Acad. Sci. 116, 8431–8436. https://doi.org/10.7302/Z2JS9NNG (2019).
Google Scholar
Jia, H. & Steven, R. Fossil leaves and fruits of Cercis L. (Leguminosae) from the Eocene of western North America. International Journal of Plant Sciences 175, 601–612, doi:https://doi.org/10.1086/675693 (2014).
Kraemer, M. & Favi, F. Emergence phenology of Osmia lignaria subsp lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis. Environ. Entomol. 39, 351–358. https://doi.org/10.1603/en09242 (2010).
Google Scholar
USDA. Census of horticultural specialties. Volume 3 AC-12-SS-3, Washington, DC (2014).
Source: Ecology - nature.com