Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).
Google Scholar
Frankham, R., Ballow, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).
Google Scholar
Grosberg, R. & Cunningham, C. W. Genetic Structure in the Sea. Marine Community Ecology 61–84 (Sinauer, 2001).
Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377 (2008).
Google Scholar
Selkoe, K. A., Gaggiotti, O. E., Laboratory, T., Bowen, B. W. & Toonen, R. J. Emergent patterns of population genetic structure for a coral reef community. Mol. Ecol. 23, 3064–3079 (2014).
Google Scholar
Holland, L., Jenkins, T. & Stevens, J. Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals. Heredity 119, 35–48 (2017).
Google Scholar
Pérez-Portela, R. & Riesgo, A. Population Genomics: Marine Organisms 103–137 (Springer, 2018).
Google Scholar
Jackson, J. & Coates, A. Life cycles and evolution of clonal (modular) animals. Philos. Trans. R Soc. Lond. B Biol. Sci. 313, 7–22 (1986).
Google Scholar
Mladenov, P. V. & Emson, R. H. Divide and broadcast: Sexual reproduction in the West Indian brittle star Ophiocomella ophiactoides and its relationship to fissiparity. Mar. Biol. 81, 273–282. https://doi.org/10.1007/BF00393221 (1984).
Google Scholar
Emson, R. H. & Wilkie, I. C. Fission and Autotomy in Echinoderms (Aberdeen University Press, 1980).
Haramoto, S., Komatsu, M. & Yamazaki, Y. Population genetic structures of the fissiparous seastar Coscinasterias acutispina in the Sea of Japan. Mar. Biol. 149, 813–820 (2006).
Google Scholar
Barker, M. F. & Scheibling, R. E. Rates of fission, somatic growth and gonadal development of a fissiparous sea star, Allostichaster insignis, in New Zealand. Mar. Biol. 153, 815–824 (2008).
Google Scholar
Garcia-Cisneros, A. et al. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol. Ecol. 27, 752–772 (2018).
Google Scholar
De Meeûs, T., Prugnolle, F. & Agnew, P. Asexual reproduction: Genetics and evolutionary aspects. Cell. Mol. Life Sci. 64, 1355–1372 (2007).
Google Scholar
Balloux, F., Lehmann, L. & de Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).
Google Scholar
Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).
Google Scholar
Bengtsson, B. O. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 16, 189–199 (2003).
Google Scholar
McGovern, T. M. Sex-ratio bias and clonal reproduction in the brittle star Ophiactis savignyi. Evolution 56, 511–517 (2002).
Google Scholar
Alves, L., Pereira, A. & Ventura, C. Sexual and asexual reproduction of Coscinasterias tenuispina (Echinodermata: Asteroidea) from Rio de Janeiro, Brazil. Mar. Biol. 140, 95–101 (2002).
Google Scholar
Lawrence, J. M. Starfish: Biology and Ecology of the Asteroidea (JHU Press, 2013).
Barker, M. Descriptions of the larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea) from New Zealand, obtained from laboratory culture. Biol. Bull. 154, 32–46 (1978).
Google Scholar
Shibata, D., Hirano, Y. & Komatsu, M. Life cycle of the multiarmed sea star Coscinasterias acutispina (Stimpson, 1862) in laboratory culture: Sexual and asexual reproductive pathways. Zoolog. Sci. 28, 313–317 (2011).
Google Scholar
Garcia-Cisneros, A., Pérez-Portela, R., Wangensteen, O. S., Campos-Canet, M. & Palacín, C. Hope springs eternal in the starfish gonad: Preserved potential for sexual reproduction in a single-clone population of a fissiparous starfish. Hydrobiologia 787, 291–305 (2017).
Google Scholar
Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).
Google Scholar
Patarnello, T. O. M. A., Volckaert, F. A. M. J. & Castilho, R. I. T. A. Pillars of Hercules: Is the Atlantic–Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444 (2007).
Google Scholar
Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One 12, e0176419 (2017).
Google Scholar
Perez-Portela, R. & Turon, X. Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111, 163–178 (2008).
Google Scholar
Riesgo, A. et al. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity 117, 427 (2016).
Google Scholar
Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).
Google Scholar
Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).
Google Scholar
Pérez-Portela, R., Almada, V. & Turon, X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zoolog. Scr. 42, 151–169. https://doi.org/10.1111/j.1463-6409.2012.00573.x (2013).
Google Scholar
Taboada, S. & Pérez-Portela, R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci. Rep. 6, 32425 (2016).
Google Scholar
Perez-Portela, R., Turon, X. & Bishop, J. D. D. Bottlenecks and loss of genetic diversity: Spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Mar. Ecol. Prog. Ser. 105, 93–105 (2012).
Google Scholar
Garcia-Cisneros, A. et al. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity 115, 437–443 (2015).
Google Scholar
Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. 101, 17312–17315 (2004).
Google Scholar
Kotrschal, A., Ilmonen, P. & Penn, D. J. Stress impacts telomere dynamics. Biol. Let. 3, 128–130 (2007).
Google Scholar
Sköld, H. N., Asplund, M. E., Wood, C. A. & Bishop, J. D. Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. J. Exp. Zool. B Mol. Dev. Evol. 316, 276–283 (2011).
Google Scholar
Marriage, T. N. & Orive, M. E. Mutation-selection balance and mixed mating with asexual reproduction. J. Theor. Biol. 308, 25–35 (2012).
Google Scholar
Lamare, M. D., Channon, T., Cornelisen, C. & Clarke, M. Archival electronic tagging of a predatory sea star—Testing a new technique to study movement at the individual level. J. Exp. Mar. Biol. Ecol. 373, 1–10 (2009).
Google Scholar
Johnson, M. & Threlfall, T. Fissiparity and population genetics of Coscinasterias calamaria. Mar. Biol. 93, 517–525 (1987).
Google Scholar
Sköld, M., Wing, S. R. & Mladenov, P. V. Genetic subdivision of a sea star with high dispersal capability in relation to physical barriers in a fjordic seascape. Mar. Ecol. Prog. Ser. 250, 163–174 (2003).
Google Scholar
Waters, J. & Roy, M. Global phylogeography of the fissiparous sea-star genus Coscinasterias. Mar. Biol. 142, 185–191 (2003).
Google Scholar
Pazoto, C., Ventura, C. & Silva, E. Genetic contribution of sexual and asexual reproduction to the recruitment of a sexually unbalanced population of Coscinasterias tenuispina (Echinodermata: Asteroidea) in Rio De Janeiro, Brazil. Echinoderms, 473–478 (CRC Press/Balkema, 2010).
Gélin, P. et al. Superclone expansion, long-distance clonal dispersal and local genetic structuring in the coral Pocillopora damicornis type β in Reunion Island South Western Indian Ocean. PLoS One 12, e0169692 (2017).
Google Scholar
Puritz, J. B. et al. Extraordinarily rapid life-history divergence between Cryptasterina sea star species. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1343 (2012).
Google Scholar
Keever, C. C. et al. Shallow gene pools in the high intertidal: Extreme loss of genetic diversity in viviparous sea stars (Parvulastra). Biol. Lett. 9, 20130551 (2013).
Google Scholar
Delmotte, F., Leterme, N., Gauthier, J. P., Rispe, C. & Simon, J. C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol. Ecol. 11, 711–723 (2002).
Google Scholar
Ventura, C., Alves, S., Maurício, C. & Silva, E. Reproduction and population genetics of Coscinasterias tenuispina (Asteroidea, Asteriidae) on the Brazilian coast. Echinoderms: Müchen, 73–77 (Taylor and Francis Group, 2004).
Zitari-Chatti, R. et al. Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136, 439–447 (2009).
Google Scholar
Pérez-Portela, R., Rius, M. & Villamor, A. Lineage splitting, secondary contacts and genetic admixture of a widely distributed marine invertebrate. J. Biogeogr. https://doi.org/10.1111/jbi.12917 (2016).
Google Scholar
Perez-Portela, R., Villamor, A. & Almada, V. Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): Deep genetic divergence between mitochondrial lineages in the north-western mediterranean. Mar. Biol. 157, 2015–2028 (2010).
Google Scholar
Candela, J. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–299. https://doi.org/10.1016/0377-0265(91)90023-9 (1991).
Google Scholar
Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).
Google Scholar
Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C. & Pérez-Portela, R. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conserv. Genet. Resour. 5, 749–753. https://doi.org/10.1007/s12686-013-9897-5 (2013).
Google Scholar
Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2009).
Google Scholar
Meirmans, P. G. & Van Tienderen, P. H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).
Google Scholar
Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
Google Scholar
Arnaud-Haond, S. & Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 7, 15–17 (2007).
Google Scholar
Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, 2008).
Google Scholar
Warnes, M. G. R., Bolker, B., Bonebakker, L., Gentleman, R. & Huber, W. Package ‘gplots’. Various R programming tools for plotting data (2016).
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
Google Scholar
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
Google Scholar
Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. 98, 4563–4568 (2001).
Google Scholar
Source: Ecology - nature.com