Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Google Scholar
Baillie, J. E. ., Hilton-Taylor, C. & Stuart, S. N. 2004 IUCN Red List of Threatened Species. A Global Species Assessment. (2004).
Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).
Google Scholar
Cowen, R. K. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).
Google Scholar
Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
Google Scholar
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
Google Scholar
White, J. W. et al. Connectivity, dispersal, and recruitment. Oceanography 32, 50–59 (2019).
Google Scholar
Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).
Google Scholar
Saunders, M. I. et al. Human impacts on connectivity in marine and freshwater ecosystems assessed using graph theory: A review. Mar. Freshw. Res. 67, 277 (2016).
Google Scholar
Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G. & Planes, S. Unexpected residual habitats raise hope for the survival of the over the edge of extinction fan mussel, Pinna nobilis, along the Occitan coast (north-western Mediterranean Sea) (2020).
De Gaulejac, B. Mise en évidence de l’hermaphrodisme successif à maturation asynchrone de Pinna nobilis. Biol. Pathol. Anim. 1, 99–103 (1995).
Butler, A., Vicente, N. & de Gaulejac, B. Ecology of the pterioid bivalves Pinna bicolor Gmelin and Pinna nobilis L. Mar. Life 3, 37–45 (1993).
Trigos, S., Vicente, N., Prado, P. & Espinós, F. J. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483, 102–110 (2018).
Google Scholar
Öndes, F., Kaiser, M. J. & Güçlüsoy, H. Human impacts on the endangered fan mussel, Pinna nobilis. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 31–41 (2020).
Google Scholar
IOPR. Premier séminaire international sur la grande nacre de Méditerranée : Pinna nobilis. Mém. Inst. Océanogr. Paul Ricard 134 (2003).
Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63, 412–417 (2008).
Google Scholar
Rabaoui, L. et al. Genetic variation among populations of the endangered fan mussel Pinna nobilis (Mollusca: Bivalvia) along the Tunisian coastline. Hydrobiologia 678, 99–111 (2011).
Google Scholar
Sanna, D. et al. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the mediterranean sea. PLoS ONE 8, e67372 (2013).
Google Scholar
González-Wangüemert, M. et al. Gene pool and connectivity patterns of Pinna nobilis in the Balearic Islands (Spain, Western Mediterranean Sea): Implications for its conservation through restocking. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 175–188 (2019).
Google Scholar
Wesselmann, M. et al. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Sci. Rep. 8, 4770 (2018).
Google Scholar
Sanna, D. et al. New mitochondrial and nuclear primers for the Mediterranean marine bivalve Pinna nobilis. Mediterr. Mar. Sci. 15, 416 (2014).
Google Scholar
Catanese, G. et al. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 157, 9–24 (2018).
Google Scholar
Scarpa, F. et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life 10, 238 (2020).
Google Scholar
Grau, A. et al. Wide-geographic and long-term analysis of the role of pathogens in the decline of Pinna nobilis to critically endangered species. (2021).
Vázquez-Luis, M. et al. Pinna nobilis: A mass mortality event in Western Mediterranean Sea. Front. Mar. Sci. 4, 1–6 (2017).
Google Scholar
Cabanellas-Reboredo, M. et al. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci. Rep. 9, 13355 (2019).
Google Scholar
García-March, J. R. et al. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction?. Biol. Conserv. 243, 108498 (2020).
Google Scholar
Kersting, D. et al. Pinna nobilis. The IUCN Red List of Threatened Species 2019. (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T160075998A160081499.en
Ifremer. Réseau de Suivi Lagunaire du Languedoc-Roussillon. (2014).
García-March, J. R., García-Carrascosa, A. M. & Pena, Á. L. In situ measurement of Pinna nobilis shells for age and growth studies: A new device. Mar. Ecol. 23, 207–217 (2002).
Google Scholar
De Gaulejac, B. Etude écophysiologique du mollusque bivalve méditerranéen Pinna nobilis L. reproduction; croissance; respiration. (1993).
Peyran, C., Planes, S., Tolou, N., Iwankow, G. & Boissin, E. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol. Biol. Rep. https://doi.org/10.1007/s11033-020-05338-1 (2020).
Google Scholar
González-Wangüemert, M. et al. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterr. Mar. Sci. 16, 31 (2014).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 65: Genetic analysis in Excel. Population genetic software for teaching and research: An update. Bioinformatics 28, 2537–2539 (2012).
Google Scholar
Szpiech, Z. A., Jakobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24, 2498–2504 (2008).
Google Scholar
Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).
Google Scholar
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Population genetics software for Windows TM. Université de Montpellier II (2004).
Robertson, A. & Hill, W. G. Deviations from Hardy–Weinberg proportions: Sampling variances and use in estimation of inbreeding coefficients. Genetics 107, 703–718 (1984).
Google Scholar
Raufaste, N. & Bonhomme, F. Properties of bias and variance of two multiallelic estimators of FST. Theor. Popul. Biol. 57, 285–296 (2000).
Google Scholar
Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (2018).
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. (2000).
Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
Google Scholar
Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258 (1989).
Google Scholar
Kraemer, P. & Gerlach, G. Demerelate: Calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol. Ecol. Resour. 17, 1371–1377 (2017).
Google Scholar
Hare, M. P., Karl, S. A. & Avise, J. C. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13, 334–345 (1996).
Google Scholar
Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: Genetic panmixia in the Aegean and the Ionian Seas. J. Mar. Biol. Assoc. UK 94, 797–809 (2014).
Google Scholar
Tarnowska, K., Chenuil, A., Nikula, R., Féral, J. & Wolowicz, M. Complex genetic population structure of the bivalve Cerastoderma glaucum in a highly fragmented lagoon habitat. Mar. Ecol. Prog. Ser. 406, 173–184 (2010).
Google Scholar
Šegvić-Bubić, T. et al. Translocation and aquaculture impact on genetic diversity and composition of wild self-sustainable Ostrea edulis populations in the Adriatic sea. Front. Mar. Sci. 7, 1–13 (2020).
Google Scholar
Dupont, L., Ellien, C. & Viard, F. Limits to gene flow in the slipper limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar. Ecol. Prog. Ser. 349, 125–138 (2007).
Google Scholar
Ellegren, H. & Ellegren, N. Determinants of genetic diversity. Nat. Publ. Gr. 17, 422–433 (2016).
Google Scholar
Mendo, T., Moltschaniwskyj, N., Lyle, J. M., Tracey, S. R. & Semmens, J. M. Role of density in aggregation patterns and synchronization of spawning in the hermaphroditic scallop Pecten fumatus. Mar. Biol. 161, 2857–2868 (2014).
Google Scholar
Žuljević, A., Despalatović, M., Cvitković, I., Morton, B. & Antolić, B. Mass spawning by the date mussel Lithophaga lithophaga. Sci. Rep. 8, 10781 (2018).
Google Scholar
Lamare, M. D. & Stewart, B. G. Mass spawning by the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar. Biol. 132, 135–140 (1998).
Google Scholar
Soong, K., Chang, D. & Chao, S. Presence of spawn-inducing pheromones in two brittle stars (Echinodermata: Ophiuroidea). Mar. Ecol. Prog. Ser. 292, 195–201 (2005).
Google Scholar
Watson, G., Bentley, M., Gaudron, S. & Hardege, J. The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates. J. Exp. Mar. Biol. Ecol. 294, 169–187 (2003).
Google Scholar
Gaulejac, B. D., Henry, M. & Vicente, N. An ultrastructural study of gametogenesis of the marine bivalve Pinna nobilis (Linnaeus 1758) II, Spermatogenesis. J. Molluscan Stud. 61, 393–403 (1995).
Google Scholar
Cabanellas-Reboredo, M. et al. Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Mar. Biodivers. Rec. 2, e126 (2009).
Google Scholar
Prado, P. et al. Breeding, planktonic and settlement factors shape recruitment patterns of one of the last remaining major population of Pinna nobilis within Spanish waters. Hydrobiologia 847, 771–786 (2020).
Google Scholar
Deudero, S. et al. Reproductive investment of the pen shell Pinna nobilis Linnaeus, 1758 in Cabrera National Park (Spain). Mediterr. Mar. Sci. 18, 271 (2017).
Google Scholar
Costantini, F., Rugiu, L., Cerrano, C. & Abbiati, M. Living upside down: Patterns of red coral settlement in a cave. Mediterr. Mar. Sci. https://doi.org/10.7717/peerj.4649 (2018).
Google Scholar
Cárdenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).
Google Scholar
Morvezen, R. et al. Genetic structure of a commercially exploited bivalve, the great scallop Pecten maximus, along the European coasts. Conserv. Genet. 17, 57–67 (2016).
Google Scholar
Borsa, P., Jarne, P., Belkhir, K. & Bonhomme, F. Genetic structure of the palourde 103. Genet. Evol. Aquat. Org. 103, 1–12 (1994).
Skalamera, J., Renaud, F., Raymond, M. & de Meeûs, T. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178, 251–258 (1999).
Google Scholar
Boissin, E., Hoareau, T. B. & Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 102, 175–198 (2011).
Google Scholar
Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).
Google Scholar
Frankham, R. Quantitative genetics in conservation biology. Genet. Res. 74, 237–244 (1999).
Google Scholar
Source: Ecology - nature.com