in

Genetic homogeneity of the critically endangered fan mussel, Pinna nobilis, throughout lagoons of the Gulf of Lion (North-Western Mediterranean Sea)

  • 1.

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Baillie, J. E. ., Hilton-Taylor, C. & Stuart, S. N. 2004 IUCN Red List of Threatened Species. A Global Species Assessment. (2004).

  • 3.

    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Cowen, R. K. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Article 

    Google Scholar 

  • 6.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    White, J. W. et al. Connectivity, dispersal, and recruitment. Oceanography 32, 50–59 (2019).

    Article 

    Google Scholar 

  • 8.

    Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Saunders, M. I. et al. Human impacts on connectivity in marine and freshwater ecosystems assessed using graph theory: A review. Mar. Freshw. Res. 67, 277 (2016).

    Article 

    Google Scholar 

  • 10.

    Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G. & Planes, S. Unexpected residual habitats raise hope for the survival of the over the edge of extinction fan mussel, Pinna nobilis, along the Occitan coast (north-western Mediterranean Sea) (2020).

  • 11.

    De Gaulejac, B. Mise en évidence de l’hermaphrodisme successif à maturation asynchrone de Pinna nobilis. Biol. Pathol. Anim. 1, 99–103 (1995).

    Google Scholar 

  • 12.

    Butler, A., Vicente, N. & de Gaulejac, B. Ecology of the pterioid bivalves Pinna bicolor Gmelin and Pinna nobilis L. Mar. Life 3, 37–45 (1993).

    Google Scholar 

  • 13.

    Trigos, S., Vicente, N., Prado, P. & Espinós, F. J. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483, 102–110 (2018).

    Article 

    Google Scholar 

  • 14.

    Öndes, F., Kaiser, M. J. & Güçlüsoy, H. Human impacts on the endangered fan mussel, Pinna nobilis. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 31–41 (2020).

    Article 

    Google Scholar 

  • 15.

    IOPR. Premier séminaire international sur la grande nacre de Méditerranée : Pinna nobilis. Mém. Inst. Océanogr. Paul Ricard 134 (2003).

  • 16.

    Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63, 412–417 (2008).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Rabaoui, L. et al. Genetic variation among populations of the endangered fan mussel Pinna nobilis (Mollusca: Bivalvia) along the Tunisian coastline. Hydrobiologia 678, 99–111 (2011).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sanna, D. et al. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the mediterranean sea. PLoS ONE 8, e67372 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    González-Wangüemert, M. et al. Gene pool and connectivity patterns of Pinna nobilis in the Balearic Islands (Spain, Western Mediterranean Sea): Implications for its conservation through restocking. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 175–188 (2019).

    Article 

    Google Scholar 

  • 20.

    Wesselmann, M. et al. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Sci. Rep. 8, 4770 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Sanna, D. et al. New mitochondrial and nuclear primers for the Mediterranean marine bivalve Pinna nobilis. Mediterr. Mar. Sci. 15, 416 (2014).

    Article 

    Google Scholar 

  • 22.

    Catanese, G. et al. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 157, 9–24 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Scarpa, F. et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life 10, 238 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Grau, A. et al. Wide-geographic and long-term analysis of the role of pathogens in the decline of Pinna nobilis to critically endangered species. (2021).

  • 25.

    Vázquez-Luis, M. et al. Pinna nobilis: A mass mortality event in Western Mediterranean Sea. Front. Mar. Sci. 4, 1–6 (2017).

    Article 

    Google Scholar 

  • 26.

    Cabanellas-Reboredo, M. et al. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci. Rep. 9, 13355 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    García-March, J. R. et al. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction?. Biol. Conserv. 243, 108498 (2020).

    Article 

    Google Scholar 

  • 28.

    Kersting, D. et al. Pinna nobilis. The IUCN Red List of Threatened Species 2019. (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T160075998A160081499.en

  • 29.

    Ifremer. Réseau de Suivi Lagunaire du Languedoc-Roussillon. (2014).

  • 30.

    García-March, J. R., García-Carrascosa, A. M. & Pena, Á. L. In situ measurement of Pinna nobilis shells for age and growth studies: A new device. Mar. Ecol. 23, 207–217 (2002).

    ADS 
    Article 

    Google Scholar 

  • 31.

    De Gaulejac, B. Etude écophysiologique du mollusque bivalve méditerranéen Pinna nobilis L. reproduction; croissance; respiration. (1993).

  • 32.

    Peyran, C., Planes, S., Tolou, N., Iwankow, G. & Boissin, E. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol. Biol. Rep. https://doi.org/10.1007/s11033-020-05338-1 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    González-Wangüemert, M. et al. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterr. Mar. Sci. 16, 31 (2014).

    Article 

    Google Scholar 

  • 34.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Peakall, R. & Smouse, P. E. GenAlEx 65: Genetic analysis in Excel. Population genetic software for teaching and research: An update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Szpiech, Z. A., Jakobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24, 2498–2504 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Population genetics software for Windows TM. Université de Montpellier II (2004).

  • 40.

    Robertson, A. & Hill, W. G. Deviations from Hardy–Weinberg proportions: Sampling variances and use in estimation of inbreeding coefficients. Genetics 107, 703–718 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Raufaste, N. & Bonhomme, F. Properties of bias and variance of two multiallelic estimators of FST. Theor. Popul. Biol. 57, 285–296 (2000).

    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

  • 44.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. (2000).

  • 46.

    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar 

  • 47.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Kraemer, P. & Gerlach, G. Demerelate: Calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol. Ecol. Resour. 17, 1371–1377 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Hare, M. P., Karl, S. A. & Avise, J. C. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13, 334–345 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: Genetic panmixia in the Aegean and the Ionian Seas. J. Mar. Biol. Assoc. UK 94, 797–809 (2014).

    Article 

    Google Scholar 

  • 55.

    Tarnowska, K., Chenuil, A., Nikula, R., Féral, J. & Wolowicz, M. Complex genetic population structure of the bivalve Cerastoderma glaucum in a highly fragmented lagoon habitat. Mar. Ecol. Prog. Ser. 406, 173–184 (2010).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Šegvić-Bubić, T. et al. Translocation and aquaculture impact on genetic diversity and composition of wild self-sustainable Ostrea edulis populations in the Adriatic sea. Front. Mar. Sci. 7, 1–13 (2020).

    Article 

    Google Scholar 

  • 57.

    Dupont, L., Ellien, C. & Viard, F. Limits to gene flow in the slipper limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar. Ecol. Prog. Ser. 349, 125–138 (2007).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Ellegren, H. & Ellegren, N. Determinants of genetic diversity. Nat. Publ. Gr. 17, 422–433 (2016).

    CAS 

    Google Scholar 

  • 59.

    Mendo, T., Moltschaniwskyj, N., Lyle, J. M., Tracey, S. R. & Semmens, J. M. Role of density in aggregation patterns and synchronization of spawning in the hermaphroditic scallop Pecten fumatus. Mar. Biol. 161, 2857–2868 (2014).

    Article 

    Google Scholar 

  • 60.

    Žuljević, A., Despalatović, M., Cvitković, I., Morton, B. & Antolić, B. Mass spawning by the date mussel Lithophaga lithophaga. Sci. Rep. 8, 10781 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Lamare, M. D. & Stewart, B. G. Mass spawning by the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar. Biol. 132, 135–140 (1998).

    Article 

    Google Scholar 

  • 62.

    Soong, K., Chang, D. & Chao, S. Presence of spawn-inducing pheromones in two brittle stars (Echinodermata: Ophiuroidea). Mar. Ecol. Prog. Ser. 292, 195–201 (2005).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Watson, G., Bentley, M., Gaudron, S. & Hardege, J. The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates. J. Exp. Mar. Biol. Ecol. 294, 169–187 (2003).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Gaulejac, B. D., Henry, M. & Vicente, N. An ultrastructural study of gametogenesis of the marine bivalve Pinna nobilis (Linnaeus 1758) II, Spermatogenesis. J. Molluscan Stud. 61, 393–403 (1995).

    Article 

    Google Scholar 

  • 65.

    Cabanellas-Reboredo, M. et al. Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Mar. Biodivers. Rec. 2, e126 (2009).

    Article 

    Google Scholar 

  • 66.

    Prado, P. et al. Breeding, planktonic and settlement factors shape recruitment patterns of one of the last remaining major population of Pinna nobilis within Spanish waters. Hydrobiologia 847, 771–786 (2020).

    Article 

    Google Scholar 

  • 67.

    Deudero, S. et al. Reproductive investment of the pen shell Pinna nobilis Linnaeus, 1758 in Cabrera National Park (Spain). Mediterr. Mar. Sci. 18, 271 (2017).

    Article 

    Google Scholar 

  • 68.

    Costantini, F., Rugiu, L., Cerrano, C. & Abbiati, M. Living upside down: Patterns of red coral settlement in a cave. Mediterr. Mar. Sci. https://doi.org/10.7717/peerj.4649 (2018).

    Article 

    Google Scholar 

  • 69.

    Cárdenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).

    ADS 
    Article 

    Google Scholar 

  • 70.

    Morvezen, R. et al. Genetic structure of a commercially exploited bivalve, the great scallop Pecten maximus, along the European coasts. Conserv. Genet. 17, 57–67 (2016).

    Article 

    Google Scholar 

  • 71.

    Borsa, P., Jarne, P., Belkhir, K. & Bonhomme, F. Genetic structure of the palourde 103. Genet. Evol. Aquat. Org. 103, 1–12 (1994).

    Google Scholar 

  • 72.

    Skalamera, J., Renaud, F., Raymond, M. & de Meeûs, T. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178, 251–258 (1999).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Boissin, E., Hoareau, T. B. & Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 102, 175–198 (2011).

    Article 

    Google Scholar 

  • 74.

    Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).

    ADS 
    Article 

    Google Scholar 

  • 75.

    Frankham, R. Quantitative genetics in conservation biology. Genet. Res. 74, 237–244 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity