in

Genetic melting pot and importance of long-distance dispersal indicated in the Gladiolus imbricatus L. populations in the Polish Carpathians

  • 1.

    Zarzycki, K. Paprotniki i rośliny kwiatowe (rośliny naczyniowe). In: Flora i Fauna Pienin. (ed. Razowski J). Monogr. Pienińskie 1, 75–79 (2000).

    Google Scholar 

  • 2.

    Środoń, W. Pieniny w historii szaty roślinnej Podhala [Pieniny in the history of plant cover in Podhale region]. In : K. Zarzycki (ed.). Przyroda Pienin w obliczu zmian [The nature of the Pieniny Mts (West Carpathians) in face of the coming changes]. Stud. Nat. 30B, 115–126 (1982).

    Google Scholar 

  • 3.

    Deptuła, C. Nad rekonstrukcją dziejów regionu czartoryskiego w XIII I XIV wieku [On the reconstruction of the history of the Czorsztyn region from the 13th to 16th centuries]. Pieniny—Człowiek Przyroda 5, 21–35 (1997) (in Polish with English summary).

    Google Scholar 

  • 4.

    Kierś, M. (ed.) Wołosi: Nomadzi Bałkanów (Uniwersytet Jagielloński, 2013).

    Google Scholar 

  • 5.

    Oravcová, M. & Krupa, E. Pedigree analysis of the former Valachian sheep. Slovak. J. Anim. Sci. 44, 6–12 (2011).

    Google Scholar 

  • 6.

    Wace, A.J.B. & Thompson, M.S. The Nomads of the Balkans. Vol. 6 (Methuen & Co., 1914). https://archive.org/stream/nomadsofbalkansa00wace#page/n9/mode/2up. Accessed 28 June 2021.

  • 7.

    Stachurska-Swakoń, A. Phytogeographical aspects of grasses occuring in tall-herb vegetation in the Carpathians. in Grasses in Poland and Elsewhere (ed. Frey, L.). 39–47. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2009).

  • 8.

    Stachurska-Swakoń, A. Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39, 217–234. https://doi.org/10.1127/0340-269X/2009/0039-0217 (2009).

    Article 

    Google Scholar 

  • 9.

    Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).

    Article 

    Google Scholar 

  • 10.

    Pawłowski, B., Pawłowska, S. & Zarzycki, K. Zespoły roślinne kośnych łąk północnej części Tatr i Podtatrza. Fragm. Flor. Geobot. Pol. 6(2), 95–222 (1960).

    Google Scholar 

  • 11.

    Korzeniak, J. 6520* Mountain Yellow Trisetum and Bent-Grass Hay Meadows 55–67 (Methodological guide. GIOŚ, 2013).

    Google Scholar 

  • 12.

    Wróbel, I. Pasterstwo w regionie pienińskim [Sheep farming in the Pieniny region]. Pieniny Człowiek Przyroda 5, 43–52 (1997) (in Polish with English summary).

    Google Scholar 

  • 13.

    Kostrakiewicz-Gierałt, K., Palic, C. C., Stachurska-Swakoń, A., Nedeff, V. & Sandu, I. The causes of disappearance of sward lily Gladiolus imbricatus L from natural stands—Synthesis of current state of knowledge. Int. J. Conserv. Sci. 9, 821–834 (2018).

    Google Scholar 

  • 14.

    Wróbel, I. Szata roślinna Pienińskiego Parku Narodowego – podsumowanie Planu Ochrony na lata 2001–2020 [Plant cover of the Pieniny National Park – summing up the Protection Plan for the years 2001–2020]. Pieniny Człowiek Przyroda 8, 63–69 (2003).

    Google Scholar 

  • 15.

    Kubíková, P. & Zeidler, M. Habitat demands and population characteristics of the rare plant species Gladiolus imbricatus L. in the Frenštát region (NE Moravia, the Czech Republic). Čas. Slez. Muz. Opava 60(A), 154–164 (2011).

    Google Scholar 

  • 16.

    Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Flowering Plants and Pteridophytes of Poland, a Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2002).

    Google Scholar 

  • 17.

    Hamilton, A. P. The European Gladioli. Quart. Bull. Alp. Gard. Soc. 44, 140–146 (1976).

    Google Scholar 

  • 18.

    Kornaś, J. M. & Medwecka-Kornaś, A. Zespoły roślinne Gorców. I. Naturalne i na wpół naturalne zespoły nieleśne. Fragm. Flor. Geobot. Polon. 13(2), 167–316 (1967).

    Google Scholar 

  • 19.

    Ascherson, P. & Engler, A. Beiträge zur Flora Westgaliziens und der Central-Karpaten. Osterr. Bot. Z. 15, 273–285. https://doi.org/10.1007/BF01623075 (1865).

    Article 

    Google Scholar 

  • 20.

    Wołoszczak, E. Zapiski botaniczne z Karpat Sądeckich. Spraw. Komis. Fizjogr. AU 30, 174–206 (1895).

    Google Scholar 

  • 21.

    Zapałowicz, H. Conspectus Florae Galiciae Criticus Vol. 1 (Nakł. Akad. Umiej., 1906).

    Google Scholar 

  • 22.

    Piękoś-Mirkowa, H. & Mirek, Z. Flora Polski. Rośliny Chronione (Oficyna Wydawnicza Multico, 2006).

    Google Scholar 

  • 23.

    Dembicz, I. et al. New locality of Trollius europaeus L. and Gladiolus imbricatus L. near Sochocin by Płońsk (Central Poland). Opole Sci. Soc. Nat. J. 44, 36–46 (2011).

    Google Scholar 

  • 24.

    Kropač, Z. & Mochnacký, S. Contribution to the segetal communities of Slovakia, Thaiszia. J. Bot. 19, 145–211 (2009).

    Google Scholar 

  • 25.

    Mirek, Z., Nikel, A. & Wilk, Ł. Ozdoba łąk reglowych. Tatry 4(50), 50–51 (2014).

    Google Scholar 

  • 26.

    Kołos, A. A new locality of Gladiolus imbricatus (Iridaceae) in the North Podlasie Lowland. Fragm. Florist. Geobot. Polon. 22(2), 390–395 (2015).

    Google Scholar 

  • 27.

    Falkowski, M. Nowe stanowisko Gladiolus imbricatus (Iridaceae) w dolinie środkowej Wisły. Fragm. Florist. Geobot. Polon. 9, 369–370 (2002).

    Google Scholar 

  • 28.

    Nowak, A. & Antonin, A. Interesujące stanowiska Gladiolus imbricatus (Iridaceae) w Bramie Morawskiej. Fragm. Florist. Geobot. Polon. 13(1), 17–22 (2006).

    Google Scholar 

  • 29.

    Stepansky, A., Kovalski, I. & Perl-Treves, R. Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 271, 313–332. https://doi.org/10.1007/BF00984373 (1999).

    Article 

    Google Scholar 

  • 30.

    Gupta, M., Chyi, Y.-S., Romero-Sverson, J. & Owen. J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006. https://doi.org/10.1007/BF00224530 (1994).

  • 31.

    Sutkowska, A., Pasierbiński, A., Warzecha, T., Mandal, A. & Mitka, J. Refugial pattern of Bromus erectus in Central Europe based on ISSR fingerprinting. Acta Biol. Cracov. Ser. Bot. 55(2), 107–119. https://doi.org/10.2478/abcsb-2013-0026 (2013).

    Article 

    Google Scholar 

  • 32.

    Bonin, A. et al. How to track and assess genotyping errors in population genetic studies. Mol. Ecol. 3, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Vekemans, X. AFLP-surv 1.0: A Program for Genetic Diversity Analysis with AFLP (and RAPD) Population Data. https://ebe.ulb.ac.be/ebe/AFLP-SURV.html (Laboratoire de Génétique et d’Ecologie Végétales, Université Libre de Bruxelles, 2002).

  • 34.

    Yeh, F., Yang, R. & Boyle, T. POPGENE Version 1.32. Microsoft-Based Freeware for Population Genetic Analysis. https://www.softpedia.com/get/Science-CAD/Popgene-Population-Genetic-Analysis.shtml (Molecular Biology and Biotechnology Center, University of Alberta, 1999).

  • 35.

    Schönswetter, P. & Tribsch, A. Vicariance and dispersal in the Alpine perennial Bupleurum stellatum L (Apiaceae). Taxon 54, 725–732. https://doi.org/10.2307/25065429 (2005).

    Article 

    Google Scholar 

  • 36.

    Ehrich, D. AFLPdat: A collection of r functions for convenient handling of AFLP data. Mol. Ecol. Notes 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x. https://mybiosoftware.com/tag/aflpdat (2006).

  • 37.

    Paun, O., Schönswetter, P. & Winkler, M., Intrabiodiv Consortium & Tribsch, A. Historical divergence versus contemporary gene flow: Evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275. https://doi.org/10.1111/j.1365-294x.2008.03908.x (2008).

  • 38.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1093/genetics/131.2.479 (1992).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Biol. 1, 47–50. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1177/117693430500100003 (2005).

  • 40.

    Lynch, M. & Milligan, B. Analysis of population-genetic structure using RAPD markers. Mol. Ecol. 3, 91–99. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1111/j.1365-294x.1994.tb00109.x (1994).

  • 41.

    Saitou, N. & Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Makarenkov, V. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668. http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex. https://doi.org/10.1093/bioinformatics/17.7.664 (2001).

  • 43.

    Makarenkov, V. & Legendre, P. The fitting of a tree metric to a given dissimilarity with the weighted least squares criterion. J. Classif. 16, 3–26. https://doi.org/10.1007/s003579900040 (1999).

    Article 

    Google Scholar 

  • 44.

    Felsenstein, J. Phylip (Phylogeny Inference Package) Version 3.6. https://evolution.genetics.washington.edu/phylip.html (University of Washington, 2005).

  • 45.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 46.

    Kruskal, J. B. Nonmetric multidimensional scaling: A new numerical method. Psychometrika 29, 115–129 (1964).

    MathSciNet 
    Article 

    Google Scholar 

  • 47.

    Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis, Version 2.1. https://ntsyspc.software.informer.com/ (Exeter Software, 2002).

  • 48.

    Pritchard, J. K, Stephens, M. & Donelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. http://web.stanford.edu/group/pritchardlab/structure.html (2000).

  • 49.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J. & Toomajian, C. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3(7), e196. https://doi.org/10.1371/journal.pbio.0030196 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Dybova-Jachowicz, S. & Sadowska, A. (eds) Palinologia (Inst. Botaniki im. W. Szafera, Polska Akademia Nauk, 2003).

    Google Scholar 

  • 53.

    Cieślak, E., Szczepaniak, M., Kamiński, R. & Heine, W. Stan zachowania krytycznie zagrożonego gatunku Gladiolus paluster (Iridaceae) w Polsce – Analiza zmienności genetycznej osobników w uprawie Ogrodu Botanicznego Uniwersytetu Wrocławskiego w kontekście prowadzonych działań ochronnych. Fragm. Florist. Geobot. Polon. 21(1), 49–66 (2014).

    Google Scholar 

  • 54.

    Kutlunina, N., Permyakova, M. & Belyaev, A. Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Syst. Evol. 303, 1–10. https://doi.org/10.1007/s00606-016-1347-x (2017).

    Article 

    Google Scholar 

  • 55.

    Sutkowska, A., Pasierbiński, A., Warzecha, T. & Mitka, J. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst. Evol. 300, 1437–1452. https://doi.org/10.2478/abcsb-2013-0026 (2014).

    Article 

    Google Scholar 

  • 56.

    Gajewski, Z, Boroń, P, Lenart-Boroń, A, Nowak, B., Sitek, E. & Mitka, J. Conservation of Primula farinosa in Poland with respect to the genetic structure of populations. Acta Soc. Bot. Pol. 87(2), 3577 (2018). https://doi.org/10.5586/asbp.3577.

    Article 

    Google Scholar 

  • 57.

    Stojak, J., McDevitt, A. D., Herman, J. S., Searle, J. B. & Wójcik, J. M. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol. J. Linn. Soc. 115, 927–939. https://doi.org/10.1111/bij.1253541 (2015).

    Article 

    Google Scholar 

  • 58.

    Szczepaniak, M. & Cieślak, E. Low level of genetic variation within Melica transsilvanica populations from the Kraków-Częstochowa Upland and the Pieniny Mts revealed by AFLPs analysis. Acta Soc. Bot. Pol. 76(4), 321–331. https://doi.org/10.5586/asbp.2007.036 (2007).

    Article 

    Google Scholar 

  • 59.

    Bennett, K. D. & Provan, J. What do we mean by ‘refugia’?. Quatern. Sci. Rev. 27, 27–28. https://doi.org/10.1016/j.quascirev.2008.08.019 (2008).

    Article 

    Google Scholar 

  • 60.

    Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300(5625), 1563–1565. https://doi.org/10.1126/science.1083264 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Brus, R. Growing evidence for the existence of glacial refugia of European beech (Fagus sylvatica L.) in the south-eastern Alps and north-western Dinaric Alps. Periodicum Biol. 112, 239–246 (2010).

    Google Scholar 

  • 62.

    Jŏgar, Ü. & Moora, M. Reintroduction of a rare plant (Gladiolus imbricatus) population to a river floodplain—How important is meadow management?. Restor. Ecol. 16, 382–385. https://doi.org/10.1111/j.1526-100X.2008.00435.x (2008).

    Article 

    Google Scholar 

  • 63.

    Mitka, J., Boroń, P., Wróblewska, A. & Bąba, W. AFLP analysis reveals intraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe. Acta Soc. Bot. Pol. 84(2), 267–276. https://doi.org/10.5586/asbp.2015.012 (2015).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Biernacka, M. Dawne oraz współczesne formy organizacji pasterstwa w Bieszczadach. Etnogr. Polska 6, 41–61. http://webcache.googleusercontent.com/search?q=cache:JDjzqMdApxIJ:cyfrowaetnografia.pl/Content/454+&cd=1&hl=pl&ct=clnk&gl=pl (1962).

  • 65.

    Stachurska-Swakoń, A., Cieślak, E. & Ronikier, M. Phylogeography of subalpine tall-herb species in Central Europe: the case of Cicerbita alpina. Preslia 84, 121–140. https://doi.org/10.1111/j.1095-8339.2012.01323.x (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energy storage from a chemistry perspective

    Smarter regulation of global shipping emissions could improve air quality and health outcomes