Burnham, P. M. & Hendrixson, D. R. Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nat. Rev. Microbiol. 16, 551–565. https://doi.org/10.1038/s41579-018-0037-9 (2018).
Google Scholar
Humphrey, T., O’Brien, S. & Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 117, 237–257. https://doi.org/10.1016/j.ijfoodmicro.2007.01.006 (2007).
Google Scholar
Hale, C. R. et al. Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin. Infect. Dis. 54, S472–S479. https://doi.org/10.1093/cid/cis051 (2012).
Google Scholar
Friedman, C. R. et al. Risk factors for sporadic Campylobacter infection in the United States: A case-control study in FoodNet sites. Clin. Infect. Dis. 38(Suppl 3), S285–S296. https://doi.org/10.1086/381598 (2004).
Google Scholar
Marder, E. P. et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016. MMWR. Morb. Mortal. Wkly. Rep. 66, 397–403. https://doi.org/10.15585/mmwr.mm6615a1 (2017).
Google Scholar
Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M. & Man, S. M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28, 687–720. https://doi.org/10.1128/CMR.00006-15 (2015).
Google Scholar
Didelot, X. & Falush, D. Inference of bacterial microevolution using multilocus sequence data. Genetics 175, 1251–1266. https://doi.org/10.1534/genetics.106.063305 (2007).
Google Scholar
Sheppard, S. K. et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol. Ecol. 20, 3484–3490. https://doi.org/10.1111/j.1365-294X.2011.05179.x (2011).
Google Scholar
Griekspoor, P. et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol. Ecol. 22, 1463–1472. https://doi.org/10.1111/mec.12144 (2013).
Google Scholar
Ogden, I. D. et al. Campylobacter excreted into the environment by animal sources: Prevalence, concentration shed, and host association. Foodborne Pathog. Dis. 6, 1161–1170. https://doi.org/10.1089/fpd.2009.0327 (2009).
Google Scholar
Dearlove, B. L. et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 10, 721–729. https://doi.org/10.1038/ismej.2015.149 (2016).
Google Scholar
Hermans, D. et al. Colonization factors of Campylobacter jejuni in the chicken gut. Vet. Res. 42, 82. https://doi.org/10.1186/1297-9716-42-82 (2011).
Google Scholar
Sheppard, S. K. et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl. Acad. Sci. U. S. A. 110, 11923–11927. https://doi.org/10.1073/pnas.1305559110 (2013).
Google Scholar
Yahara, K. et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ. Microbiol. 19, 361–380. https://doi.org/10.1111/1462-2920.13628 (2017).
Google Scholar
Thépault, A. et al. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl. Environ. Microbiol. 83, e03085-e3116. https://doi.org/10.1128/AEM.03085-16 (2017).
Google Scholar
Buchanan, C. J. et al. A genome-wide association study to identify diagnostic markers for human pathogenic Campylobacter jejuni strains. Front. Microbiol. 8, 1224. https://doi.org/10.3389/fmicb.2017.01224 (2017).
Google Scholar
de Vries, S. P. W. et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci. Rep. 7, 1251. https://doi.org/10.1038/s41598-017-01133-4 (2017).
Google Scholar
Gormley, F. J. et al. Has retail chicken played a role in the decline of human Campylobacteriosis?. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01455-07 (2008).
Google Scholar
Korczak, B. M., Zurfluh, M., Emler, S., Kuhn-Oertli, J. & Kuhnert, P. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00237-09 (2009).
Google Scholar
Lévesque, S., Frost, E., Arbeit, R. D. & Michaud, S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00042-08 (2008).
Google Scholar
Habib, I., Uyttendaele, M. & De Zutter, L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol. 27, 829–834. https://doi.org/10.1016/j.fm.2010.04.009 (2010).
Google Scholar
Alter, T. & Scherer, K. Stress response of Campylobacter spp. and its role in food processing. J. Vet. Med. Ser. B 53, 351–357. https://doi.org/10.1111/j.1439-0450.2006.00983.x (2006).
Google Scholar
Murphy, C., Carroll, C. & Jordan, K. N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100, 623–632. https://doi.org/10.1111/j.1365-2672.2006.02903.x (2006).
Google Scholar
Mourkas, E. et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc. Natl. Acad. Sci. 117, 11018–11028. https://doi.org/10.1073/pnas.1917168117 (2020).
Google Scholar
Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: A comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 34, 4310–4312. https://doi.org/10.1093/bioinformatics/bty539 (2018).
Google Scholar
Schröder, G. & Lanka, E. TraG-like proteins of type IV secretion systems: Functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J. Bacteriol. 185, 4371–4381. https://doi.org/10.1128/JB.185.15.4371-4381.2003 (2003).
Google Scholar
Poly, F., Threadgill, D. & Stintzi, A. Genomic diversity in Campylobacter jejuni: Identification of C. jejuni 81–176-specific genes. J. Clin. Microbiol. 43, 2330–2338. https://doi.org/10.1128/JCM.43.5.2330-2338.2005 (2005).
Google Scholar
Lee, K.-Y. et al. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities. Nucleic Acids Res. 43, 5194–5207. https://doi.org/10.1093/nar/gkv348 (2015).
Google Scholar
Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565. https://doi.org/10.1038/s41576-018-0032-z (2018).
Google Scholar
Sheppard, S. K. et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23, 2442–2451. https://doi.org/10.1111/mec.12742 (2014).
Google Scholar
Mohan, V. et al. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand. Microbiologyopen 2, 659–673. https://doi.org/10.1002/mbo3.102 (2013).
Google Scholar
Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23. https://doi.org/10.1128/JCM.39.1.14-23.2001 (2001).
Google Scholar
Hershberg, R. Mutation—The engine of evolution: Studying mutation and its role in the evolution of bacteria: Figure 1. Cold Spring Harb. Perspect. Biol. 7, a018077. https://doi.org/10.1101/cshperspect.a018077 (2015).
Google Scholar
Falush, D. Bacterial genomics: Microbial GWAS coming of age. Nat. Microbiol. 1, 16059. https://doi.org/10.1038/nmicrobiol.2016.59 (2016).
Google Scholar
Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: Lessons from human GWAS. Nat. Rev. Genet. 18, 41–50. https://doi.org/10.1038/nrg.2016.132 (2017).
Google Scholar
Brandley, M. C., Warren, D. L., Leaché, A. D. & McGuire, J. A. Homoplasy and clade support. Syst. Biol. 58, 184–198. https://doi.org/10.1093/sysbio/syp019 (2009).
Google Scholar
Hassanin, A., Lecointre, G. & Tillier, S. The ‘evolutionary signal’ of homoplasy in proteincoding gene sequences and its consequences for a priori weighting in phylogeny. C. R. l’Acad. Sci. Ser. III Sci. Vie 321, 611–620. https://doi.org/10.1016/S0764-4469(98)80464-2 (1998).
Google Scholar
Sheppard, S. K. & Maiden, M. C. J. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb. Perspect. Biol. 7, a018119. https://doi.org/10.1101/cshperspect.a018119 (2015).
Google Scholar
Motiejūnaitė, R., Armalytė, J., Markuckas, A. & Sužiedėlienė, E. Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol. Lett. 268, 112–119. https://doi.org/10.1111/j.1574-6968.2006.00563.x (2007).
Google Scholar
Buts, L., Lah, J., Dao-Thi, M.-H., Wyns, L. & Loris, R. Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30, 672–679. https://doi.org/10.1016/j.tibs.2005.10.004 (2005).
Google Scholar
Gerdes, K., Christensen, S. K. & Løbner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382. https://doi.org/10.1038/nrmicro1147 (2005).
Google Scholar
Han, Z. et al. Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect. Immun. https://doi.org/10.1128/IAI.00380-17 (2017).
Google Scholar
Indikova, I., Humphrey, T. J. & Hilbert, F. Survival with a helping hand: Campylobacter and Microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01266 (2015).
Google Scholar
Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA replication fidelity in Escherichia coli : A multi-DNA polymerase affair. FEMS Microbiol. Rev. 36, 1105–1121. https://doi.org/10.1111/j.1574-6976.2012.00338.x (2012).
Google Scholar
Vandewiele, D., Fernández de Henestrosa, A. R., Timms, A. R., Bridges, B. A. & Woodgate, R. Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified α-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat. Res. Mol. Mech. Mutagen. 499, 85–95. https://doi.org/10.1016/S0027-5107(01)00268-8 (2002).
Google Scholar
Shan, S., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320. https://doi.org/10.1371/journal.pbio.0020320 (2004).
Google Scholar
Yosef, I., Bochkareva, E. S. & Bibi, E. Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. MBio https://doi.org/10.1128/mBio.00020-10 (2010).
Google Scholar
Balaban, M., Joslin, S. N. & Hendrixson, D. R. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191, 6602–6611. https://doi.org/10.1128/JB.00884-09 (2009).
Google Scholar
Budroni, S. et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl. Acad. Sci. 108, 4494–4499. https://doi.org/10.1073/pnas.1019751108 (2011).
Google Scholar
McCarthy, N. D. et al. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13, 267–272. https://doi.org/10.3201/eid1302.060620 (2007).
Google Scholar
Asakura, H. et al. Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan. PLoS ONE 7, e48394. https://doi.org/10.1371/journal.pone.0048394 (2012).
Google Scholar
Morley, L. et al. Gene loss and lineage-specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni sequence type 403 clonal complex. Appl. Environ. Microbiol. 81, 3641–3647. https://doi.org/10.1128/AEM.00546-15 (2015).
Google Scholar
National Research Council. Nutrient Requirements of Swine. Nutrient Requirements of Swine. https://doi.org/10.17226/13298 (National Academies Press, 2012).
Schröder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: Inner membrane gate for exported substrates?. J. Bacteriol. 184, 2767–2779. https://doi.org/10.1128/JB.184.10.2767-2779.2002 (2002).
Google Scholar
Kienesberger, S. et al. Interbacterial macromolecular transfer by the Campylobacter fetus subsp. venerealis type IV secretion system. J. Bacteriol. 193, 744–758. https://doi.org/10.1128/JB.00798-10 (2011).
Google Scholar
Velayudhan, J. & Kelly, D. J. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: An essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. https://doi.org/10.1099/00221287-148-3-685 (2002).
Google Scholar
Korczak, B. M. et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945. https://doi.org/10.1099/ijs.0.64109-0 (2006).
Google Scholar
González-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S. & Gaut, B. S. Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Mol. Biol. Evol. 34, 2839–2855. https://doi.org/10.1093/molbev/msx216 (2017).
Google Scholar
Richards, S. A. The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J. Physiol. 216, 1–10. https://doi.org/10.1113/jphysiol.1971.sp009505 (1971).
Google Scholar
Hottes, A. K. et al. Bacterial adaptation through loss of function. PLoS Genet. 9, e1003617. https://doi.org/10.1371/journal.pgen.1003617 (2013).
Google Scholar
Iranzo, J., Wolf, Y. I., Koonin, E. V. & Sela, I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat. Commun. 10, 5376. https://doi.org/10.1038/s41467-019-13429-2 (2019).
Google Scholar
Riedel, C. et al. Differences in the transcriptomic response of Campylobacter coli and Campylobacter lari to heat stress. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00523 (2020).
Google Scholar
Epping, L. et al. Comparison of different technologies for the decipherment of the whole genome sequence of Campylobacter jejuni BfR-CA-14430. Gut Pathog. 11, 59. https://doi.org/10.1186/s13099-019-0340-7 (2019).
Google Scholar
Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942. https://doi.org/10.1093/bioinformatics/btx330 (2017).
Google Scholar
Nikolenko, S. I., Korobeynikov, A. I. & Alekseyev, M. A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl 1), S7. https://doi.org/10.1186/1471-2164-14-S1-S7 (2013).
Google Scholar
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
Google Scholar
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).
Google Scholar
Jolley, K. A. & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 11, 595. https://doi.org/10.1186/1471-2105-11-595 (2010).
Google Scholar
Zhou, Z. et al. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404. https://doi.org/10.1101/gr.232397.117 (2018).
Google Scholar
Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693. https://doi.org/10.1093/bioinformatics/btv421 (2015).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
Google Scholar
Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Am. Math. Soc. Lect. Math. Life Sci. 17, 57–86 (1986).
Google Scholar
Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11, e1004041. https://doi.org/10.1371/journal.pcbi.1004041 (2015).
Google Scholar
Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. W. & Corander, J. RhierBAPs: An R implementation of the population clustering algorithm hierbaps [version 1; referees: 2 approved]. Wellcome Open Res. 3, 93. https://doi.org/10.12688/wellcomeopenres.14694.1 (2018).
Google Scholar
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar
Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6. https://doi.org/10.1093/nar/gkr928 (2012).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).
Google Scholar
Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293. https://doi.org/10.1093/nar/gkv1248 (2016).
Google Scholar
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122. https://doi.org/10.1093/molbev/msx148 (2017).
Google Scholar
Source: Ecology - nature.com