in

Genome-wide insights into population structure and host specificity of Campylobacter jejuni

  • 1.

    Burnham, P. M. & Hendrixson, D. R. Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nat. Rev. Microbiol. 16, 551–565. https://doi.org/10.1038/s41579-018-0037-9 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Humphrey, T., O’Brien, S. & Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 117, 237–257. https://doi.org/10.1016/j.ijfoodmicro.2007.01.006 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Hale, C. R. et al. Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin. Infect. Dis. 54, S472–S479. https://doi.org/10.1093/cid/cis051 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Friedman, C. R. et al. Risk factors for sporadic Campylobacter infection in the United States: A case-control study in FoodNet sites. Clin. Infect. Dis. 38(Suppl 3), S285–S296. https://doi.org/10.1086/381598 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Marder, E. P. et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016. MMWR. Morb. Mortal. Wkly. Rep. 66, 397–403. https://doi.org/10.15585/mmwr.mm6615a1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M. & Man, S. M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28, 687–720. https://doi.org/10.1128/CMR.00006-15 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Didelot, X. & Falush, D. Inference of bacterial microevolution using multilocus sequence data. Genetics 175, 1251–1266. https://doi.org/10.1534/genetics.106.063305 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Sheppard, S. K. et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol. Ecol. 20, 3484–3490. https://doi.org/10.1111/j.1365-294X.2011.05179.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Griekspoor, P. et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol. Ecol. 22, 1463–1472. https://doi.org/10.1111/mec.12144 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Ogden, I. D. et al. Campylobacter excreted into the environment by animal sources: Prevalence, concentration shed, and host association. Foodborne Pathog. Dis. 6, 1161–1170. https://doi.org/10.1089/fpd.2009.0327 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Dearlove, B. L. et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 10, 721–729. https://doi.org/10.1038/ismej.2015.149 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Hermans, D. et al. Colonization factors of Campylobacter jejuni in the chicken gut. Vet. Res. 42, 82. https://doi.org/10.1186/1297-9716-42-82 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Sheppard, S. K. et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl. Acad. Sci. U. S. A. 110, 11923–11927. https://doi.org/10.1073/pnas.1305559110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Yahara, K. et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ. Microbiol. 19, 361–380. https://doi.org/10.1111/1462-2920.13628 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Thépault, A. et al. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl. Environ. Microbiol. 83, e03085-e3116. https://doi.org/10.1128/AEM.03085-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Buchanan, C. J. et al. A genome-wide association study to identify diagnostic markers for human pathogenic Campylobacter jejuni strains. Front. Microbiol. 8, 1224. https://doi.org/10.3389/fmicb.2017.01224 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    de Vries, S. P. W. et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci. Rep. 7, 1251. https://doi.org/10.1038/s41598-017-01133-4 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Gormley, F. J. et al. Has retail chicken played a role in the decline of human Campylobacteriosis?. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01455-07 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Korczak, B. M., Zurfluh, M., Emler, S., Kuhn-Oertli, J. & Kuhnert, P. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00237-09 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Lévesque, S., Frost, E., Arbeit, R. D. & Michaud, S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00042-08 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Habib, I., Uyttendaele, M. & De Zutter, L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol. 27, 829–834. https://doi.org/10.1016/j.fm.2010.04.009 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Alter, T. & Scherer, K. Stress response of Campylobacter spp. and its role in food processing. J. Vet. Med. Ser. B 53, 351–357. https://doi.org/10.1111/j.1439-0450.2006.00983.x (2006).

    Article 

    Google Scholar 

  • 23.

    Murphy, C., Carroll, C. & Jordan, K. N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100, 623–632. https://doi.org/10.1111/j.1365-2672.2006.02903.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Mourkas, E. et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc. Natl. Acad. Sci. 117, 11018–11028. https://doi.org/10.1073/pnas.1917168117 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: A comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 34, 4310–4312. https://doi.org/10.1093/bioinformatics/bty539 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Schröder, G. & Lanka, E. TraG-like proteins of type IV secretion systems: Functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J. Bacteriol. 185, 4371–4381. https://doi.org/10.1128/JB.185.15.4371-4381.2003 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Poly, F., Threadgill, D. & Stintzi, A. Genomic diversity in Campylobacter jejuni: Identification of C. jejuni 81–176-specific genes. J. Clin. Microbiol. 43, 2330–2338. https://doi.org/10.1128/JCM.43.5.2330-2338.2005 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Lee, K.-Y. et al. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities. Nucleic Acids Res. 43, 5194–5207. https://doi.org/10.1093/nar/gkv348 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565. https://doi.org/10.1038/s41576-018-0032-z (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Sheppard, S. K. et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23, 2442–2451. https://doi.org/10.1111/mec.12742 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Mohan, V. et al. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand. Microbiologyopen 2, 659–673. https://doi.org/10.1002/mbo3.102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23. https://doi.org/10.1128/JCM.39.1.14-23.2001 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Hershberg, R. Mutation—The engine of evolution: Studying mutation and its role in the evolution of bacteria: Figure 1. Cold Spring Harb. Perspect. Biol. 7, a018077. https://doi.org/10.1101/cshperspect.a018077 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Falush, D. Bacterial genomics: Microbial GWAS coming of age. Nat. Microbiol. 1, 16059. https://doi.org/10.1038/nmicrobiol.2016.59 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: Lessons from human GWAS. Nat. Rev. Genet. 18, 41–50. https://doi.org/10.1038/nrg.2016.132 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Brandley, M. C., Warren, D. L., Leaché, A. D. & McGuire, J. A. Homoplasy and clade support. Syst. Biol. 58, 184–198. https://doi.org/10.1093/sysbio/syp019 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Hassanin, A., Lecointre, G. & Tillier, S. The ‘evolutionary signal’ of homoplasy in proteincoding gene sequences and its consequences for a priori weighting in phylogeny. C. R. l’Acad. Sci. Ser. III Sci. Vie 321, 611–620. https://doi.org/10.1016/S0764-4469(98)80464-2 (1998).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Sheppard, S. K. & Maiden, M. C. J. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb. Perspect. Biol. 7, a018119. https://doi.org/10.1101/cshperspect.a018119 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Motiejūnaitė, R., Armalytė, J., Markuckas, A. & Sužiedėlienė, E. Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol. Lett. 268, 112–119. https://doi.org/10.1111/j.1574-6968.2006.00563.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Buts, L., Lah, J., Dao-Thi, M.-H., Wyns, L. & Loris, R. Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30, 672–679. https://doi.org/10.1016/j.tibs.2005.10.004 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Gerdes, K., Christensen, S. K. & Løbner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382. https://doi.org/10.1038/nrmicro1147 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Han, Z. et al. Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect. Immun. https://doi.org/10.1128/IAI.00380-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Indikova, I., Humphrey, T. J. & Hilbert, F. Survival with a helping hand: Campylobacter and Microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01266 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA replication fidelity in Escherichia coli : A multi-DNA polymerase affair. FEMS Microbiol. Rev. 36, 1105–1121. https://doi.org/10.1111/j.1574-6976.2012.00338.x (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Vandewiele, D., Fernández de Henestrosa, A. R., Timms, A. R., Bridges, B. A. & Woodgate, R. Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified α-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat. Res. Mol. Mech. Mutagen. 499, 85–95. https://doi.org/10.1016/S0027-5107(01)00268-8 (2002).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Shan, S., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320. https://doi.org/10.1371/journal.pbio.0020320 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Yosef, I., Bochkareva, E. S. & Bibi, E. Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. MBio https://doi.org/10.1128/mBio.00020-10 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Balaban, M., Joslin, S. N. & Hendrixson, D. R. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191, 6602–6611. https://doi.org/10.1128/JB.00884-09 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Budroni, S. et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl. Acad. Sci. 108, 4494–4499. https://doi.org/10.1073/pnas.1019751108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    McCarthy, N. D. et al. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13, 267–272. https://doi.org/10.3201/eid1302.060620 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Asakura, H. et al. Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan. PLoS ONE 7, e48394. https://doi.org/10.1371/journal.pone.0048394 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Morley, L. et al. Gene loss and lineage-specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni sequence type 403 clonal complex. Appl. Environ. Microbiol. 81, 3641–3647. https://doi.org/10.1128/AEM.00546-15 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    National Research Council. Nutrient Requirements of Swine. Nutrient Requirements of Swine. https://doi.org/10.17226/13298 (National Academies Press, 2012).

    Google Scholar 

  • 54.

    Schröder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: Inner membrane gate for exported substrates?. J. Bacteriol. 184, 2767–2779. https://doi.org/10.1128/JB.184.10.2767-2779.2002 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Kienesberger, S. et al. Interbacterial macromolecular transfer by the Campylobacter fetus subsp. venerealis type IV secretion system. J. Bacteriol. 193, 744–758. https://doi.org/10.1128/JB.00798-10 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Velayudhan, J. & Kelly, D. J. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: An essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. https://doi.org/10.1099/00221287-148-3-685 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Korczak, B. M. et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945. https://doi.org/10.1099/ijs.0.64109-0 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    González-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S. & Gaut, B. S. Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Mol. Biol. Evol. 34, 2839–2855. https://doi.org/10.1093/molbev/msx216 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Richards, S. A. The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J. Physiol. 216, 1–10. https://doi.org/10.1113/jphysiol.1971.sp009505 (1971).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Hottes, A. K. et al. Bacterial adaptation through loss of function. PLoS Genet. 9, e1003617. https://doi.org/10.1371/journal.pgen.1003617 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Iranzo, J., Wolf, Y. I., Koonin, E. V. & Sela, I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat. Commun. 10, 5376. https://doi.org/10.1038/s41467-019-13429-2 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Riedel, C. et al. Differences in the transcriptomic response of Campylobacter coli and Campylobacter lari to heat stress. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00523 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Epping, L. et al. Comparison of different technologies for the decipherment of the whole genome sequence of Campylobacter jejuni BfR-CA-14430. Gut Pathog. 11, 59. https://doi.org/10.1186/s13099-019-0340-7 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942. https://doi.org/10.1093/bioinformatics/btx330 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Nikolenko, S. I., Korobeynikov, A. I. & Alekseyev, M. A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl 1), S7. https://doi.org/10.1186/1471-2164-14-S1-S7 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Jolley, K. A. & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 11, 595. https://doi.org/10.1186/1471-2105-11-595 (2010).

    Article 

    Google Scholar 

  • 69.

    Zhou, Z. et al. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404. https://doi.org/10.1101/gr.232397.117 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693. https://doi.org/10.1093/bioinformatics/btv421 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Am. Math. Soc. Lect. Math. Life Sci. 17, 57–86 (1986).

    MathSciNet 
    MATH 

    Google Scholar 

  • 73.

    Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11, e1004041. https://doi.org/10.1371/journal.pcbi.1004041 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. W. & Corander, J. RhierBAPs: An R implementation of the population clustering algorithm hierbaps [version 1; referees: 2 approved]. Wellcome Open Res. 3, 93. https://doi.org/10.12688/wellcomeopenres.14694.1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH 

    Google Scholar 

  • 76.

    Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6. https://doi.org/10.1093/nar/gkr928 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293. https://doi.org/10.1093/nar/gkv1248 (2016).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122. https://doi.org/10.1093/molbev/msx148 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption