in

Global climate and nutrient controls of photosynthetic capacity

  • 1.

    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).

    Article 

    Google Scholar 

  • 2.

    Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least‐cost optimality theory. Global Change Biol. 26, 5202–5216 (2020).

    Article 

    Google Scholar 

  • 3.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 Species. J. Exp. Bot. 44, 907–920 (1993).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Ferreira Domingues, T. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).

    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell Environ. 33, 959–980 (2010).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Walker, A. P. et al. The relationship of leaf photosynthetic traits -VcmaxandJmax- to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4, 3218–3235 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Givnish, T. J. On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Vol. 6 (Cambridge University Press, 1986).

  • 14.

    Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).

    Article 

    Google Scholar 

  • 15.

    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Ali, A. A. et al. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9, 587–606 (2016).

    Article 

    Google Scholar 

  • 17.

    Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 18.

    Caldararu, S., Thum, T., Yu, L. & Zaehle, S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO 2 and nutrient availability. New Phytol. 225, 2331–2346 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 19.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500–500 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Wang, H. et al. Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytol. 213, 976–982 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 23.

    Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Fürstenau Togashi, H. et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences 15, 3461–3474 (2018).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Article 

    Google Scholar 

  • 27.

    Rogers, A. The use and misuse of V c,max in earth system models. Photosynth. Res. 119, 15–29 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 28.

    Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Reich, P. B. & Schoettle, A. W. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77, 25–33 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Raaimakers, D., Boot, R. G. A., Dijkstra, P. & Pot, S. Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia 102, 120–125 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Reich, P. B., Walters, M. B., Ellsworth, D. S. & Uhl, C. Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia 97, 62–72 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol. 15, 976–991 (2009).

    Article 

    Google Scholar 

  • 36.

    Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15 (2018).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Marschner, H. in Mineral Nutrition of Higher Plants, 405–435 (Elsevier, 1995).

  • 38.

    Niinemets, Ü., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 40.

    Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biol. 26, 2573–2583 (2020).

    Article 

    Google Scholar 

  • 41.

    Peng, Y., Bloomfield, K. J. & Prentice, I. C. A theory of plant function helps to explain leaf-trait and productivity responses to elevation. New Phytol226, 1274–1284, (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Meir, P. et al. in Advances in Photosynthesis and Respiration, 89–105 (Springer International Publishing, 2017).

  • 45.

    Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).

    Article 

    Google Scholar 

  • 47.

    Lavergne, A., Sandoval, D., Hare, V. J., Graven, H. & Prentice, I. C. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Global Change Biol. 26, 7158–7172 (2020).

  • 48.

    Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 182-183, 204–214 (2013).

    Article 

    Google Scholar 

  • 49.

    Zhou, S. et al. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 34, 1035–1046 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Katul, G., Manzoni, S., Palmroth, S. & Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105, 431–442 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Manzoni, S. et al. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467 (2011).

    Article 

    Google Scholar 

  • 52.

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 17, 2134–2144 (2011).

    Article 

    Google Scholar 

  • 53.

    Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Global Change Biol. 19, 3790–3807 (2013).

    Article 

    Google Scholar 

  • 54.

    Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biol. 23, 4840–4853 (2017).

    Article 

    Google Scholar 

  • 56.

    Katul, G., Leuning, R. & Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model. Plant, Cell Environ. 26, 339–350 (2003).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ. 30, 1176–1190 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Quesada, M. et al. Succession and management of tropical dry forests in the Americas: review and new perspectives. For. Ecol. Manag. 258, 1014–1024 (2009).

    Article 

    Google Scholar 

  • 61.

    Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol187, 631–646 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 63.

    Conroy, J. P., Smillie, R. M., Küppers, M., Bevege, D. I. & Barlow, E. W. Chlorophyll a fluorescence and photosynthetic and growth responses of pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 81, 423–429 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Loustau, D., Brahim, M. B., Gaudillere, J. P. & Dreyer, E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19, 707–715 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Warren, C. R. & Adams, M. A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster. Tree Physiol. 22, 11–19 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Bloomfield, K. J., Farquhar, G. D. & Lloyd, J. Photosynthesis–nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: a controlled environment study. Funct. Plant Biol. 41, 820–832 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Crous, K. Y., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391, 293–305 (2015).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Sivak, M. N. & Walker, D. A. Photosynthesis in vivo can be limited by phosphate supplY. New Phytol. 102, 499–512 (1986).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Kiirats, O., Cruz, J. A., Edwards, G. E. & Kramer, D. M. Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct. Plant Biol. 36, 893–901 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Ellsworth, D. S., Crous, K. Y., Lambers, H. & Cooke, J. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell Environ. 38, 1142–1156 (2015).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Zhang, S. & Dang, Q. L. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol. 26, 1457–1467 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. 196, 1098–1108 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).

    Article 

    Google Scholar 

  • 74.

    Kull, O. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133, 267–279 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Field, C. & Mooney, H. in On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983 (Cambridge University Press, 1986).

  • 76.

    Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).

    Article 

    Google Scholar 

  • 77.

    Lloyd, J. et al. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7, 1833–1859 (2010).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Anten, N. P. R. Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot. 95, 495–506 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Alton, P. B. & North, P. Interpreting shallow, vertical nitrogen profiles in tree crowns: a three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. Agric. For. Meteorol. 145, 110–124 (2007).

    Article 

    Google Scholar 

  • 80.

    Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Tosens, T. & Laanisto, L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. J. Exp. Bot. 69, 5315–5318 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J. Exp. Bot. 60, 2271–2282 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell Environ. 26, 1419–1430 (2003).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Global Change Biol. 23, 2783–2800 (2017).

    Article 

    Google Scholar 

  • 87.

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Team, R. C. R.: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 89.

    Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 214, 1002–1018 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 91.

    Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 92.

    Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).

    Article 

    Google Scholar 

  • 93.

    Xu, H. Y., et al. Predictability of leaf traits with climate and elevation: a case study in Gongga Mountain, China. Tree Physiol. https://doi.org/10.1093/treephys/tpab003 (2021).

  • 94.

    Walker, A. P., et al. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area (Oak Ridge National Laboratory Distributed Active Archive Center, 2014). https://doi.org/10.3334/ORNLDAAC/1224.

  • 95.

    Kattge, J. et al. TRY–a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).

    Article 

    Google Scholar 

  • 96.

    Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519 (1992).

    Article 

    Google Scholar 

  • 97.

    Rogers, A., Serbin, S. P., Ely, K. S., Sloan, V. L. & Wullschleger, S. D. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytol. 216, 1090–1103 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Burnett, A. C., Davidson, K. J., Serbin, S. P. & Rogers, A. The “one‐point method” for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale. Plant, Cell Environ. 42, 2472–2481 (2019).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).

    Article 

    Google Scholar 

  • 100.

    Jones, H. G. Plants and Microclimate (Cambridge University Press, 2009).

  • 101.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article 

    Google Scholar 

  • 102.

    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).

    Article 

    Google Scholar 

  • 103.

    Berberan-Santos, M. N., Bodunov, E. N. & Pogliani, L. On the barometric formula. Am. J. Phys. 65, 404–412 (1997).

    Article 

    Google Scholar 

  • 104.

    Peng, Y., et al. Dataset of Global Climate and Nutrient Controls of Photosynthetic Capacity (Zenodo, 2021). https://doi.org/10.5281/zenodo.4568148.


  • Source: Ecology - nature.com

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Negative emissions, positive economy