in

Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios

  • 1.

    Liu, J. et al. Research progress in Sapindus L. germplasm resources. World For. Res. 30, 15–21 (2017).

    Google Scholar 

  • 2.

    Sun, C., Jia, L., Xi, B., Wang, L. & Weng, X. Natural variation in fatty acid composition of Sapindus spp. seed oils. Ind. Crops Prod. 102, 97–104 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Liu, J. et al. Variation in fruit and seed properties and comprehensive assessment of germplasm resources of the genus Sapindus. Sci. Silva Sin. 55, 44–54 (2019).

    Google Scholar 

  • 4.

    Xu, Y., Jia, L., Chen, Z. & Gao, Y. Advances on triterpenoid Saponin of Sapindus mukorossi. Chem. Bull. 081, 1078–1088 (2018).

    CAS 

    Google Scholar 

  • 5.

    Basu, A., Basu, S., Bandyopadhyay, S. & Chowdhury, R. Optimization of evaporative extraction of natural emulsifier cum surfactant from Sapindus mukorossi: Characterization and cost analysis. Ind. Crops Prod. 77, 920–931 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Mukhopadhyay, S., Hashim, M. A., Sahu, J. N., Yusoff, I. & Gupta, B. S. Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil. Journal of Environmental Sciences 25 (2013).

  • 7.

    Mukhopadhyay, S. et al. Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal. Chem. Eng. J. 294, 316–322 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Mukherjee, S. et al. Optimization of pulp fibre removal by flotation using colloidal gas aphrons generated from a natural surfactant. J. Taiwan Inst. Chem. Eng. 53, 15–21 (2015).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Shinobu-Mesquita, C. et al. Cellular structural changes in candida albicans caused by the hydroalcoholic extract from Sapindus saponaria L. Molecules 20, 9405–9418 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Smułek, W. et al. Sapindus saponins’ impact on hydrocarbon biodegradation by bacteria strains after short- and long-term contact with pollutant. Colloids Surf. B 142, 207–213 (2016).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Rodríguez-Hernández, D. et al. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur. J. Med. Chem. 124, 153–159 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Rodriguez-Hernández, D., Demuner, A. J., Barbosa, L. C. A., Csuk, R. & Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 105, 57–62 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Singh, P. T. D. & Singh, M. M. Anti-Trichomonas activity of Sapindus saponins, a candidate for development as microbicidal contraceptive. J. Antimicrob. Chemother. 62, 526–534 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Muntaha, S. T. & Khan, M. N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant: A dye surfactant interaction study. J. Clean. Prod. 93, 145–150 (2015).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Sun, C., Jia, L., Ye, H. O., Gao, Y. & Weng, X. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits. J. Beijing For. Univ. 12, 73–83 (2016).

    Google Scholar 

  • 16.

    Barry, C. & Cox, P. D. Biogeography: An Ecological and Evolutionary Approach (Blackwell, 1980).

    Google Scholar 

  • 17.

    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change, 95–123. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (2014).

  • 18.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 10, 4–10 (2015).

    Article 

    Google Scholar 

  • 19.

    Ray, R., Gururaja, K. V. & Ramchandra, T. V. Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. J. Environ. Biol. 32, 725–730 (2011).

    PubMed 

    Google Scholar 

  • 20.

    Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162, 79–98 (2009).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Richard et al. Will plant movements keep up with climate change? Trends Ecol. Evol. (2013).

  • 22.

    Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar 

  • 24.

    Zhu, G., Liu, G., Bu, W. & Gao, Y. Ecological niche modeling and its applications in biodiversity conservation. Biodiv. Sci. 1, 94–102 (2013).

    Google Scholar 

  • 25.

    Stockwell, D. & Peters, D. P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).

    Article 

    Google Scholar 

  • 26.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 27.

    Beaumont, L. J. et al. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distribution. Ecol. Model. 186, 251–270 (2005).

    Article 

    Google Scholar 

  • 28.

    Liaw, A. & Wiener, M. Classification and regression by random forest. R News 23, 1–10 (2002).

    Google Scholar 

  • 29.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–814 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • 31.

    Li, G., Du, S. & Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 6, 30009 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Article 

    Google Scholar 

  • 33.

    Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models?. Ecography 37, 1267–1281 (2014).

    Article 

    Google Scholar 

  • 34.

    Wang, W. et al. Assessment of potential habitat for firmiana danxiaensis, a plant species with extremely small populations in danxiashan national nature reserve based on maxent model. Scientia Silvae Sinicae (2019).

  • 35.

    Guo, Y., Guo, J., Shen, X., Wang, G. & Wang, T. Predicting the bioclimatic habitat suitability of Ginkgo biloba L. in China with field-test validations. Forests https://doi.org/10.3390/f10080705 (2019).

    Article 

    Google Scholar 

  • 36.

    Huang, Z. et al. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crops Prod. 138, 111429 (2019).

    Article 

    Google Scholar 

  • 37.

    Rong, Z. et al. Modeling the effect of climate change on the potential distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests https://doi.org/10.3390/f10010062 (2019).

    Article 

    Google Scholar 

  • 38.

    Mohammadi, S., Ebrahimi, E., Moghadam, M. S. & Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 52, 7–13 (2019).

    Article 

    Google Scholar 

  • 39.

    Ramos, R. S., Kumar, L., Shabani, F. & Picanco, M. C. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric. Syst. 173, 524–535. https://doi.org/10.1016/j.agsy.2019.03.020 (2019).

    Article 

    Google Scholar 

  • 40.

    Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 15, e0213820 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2019.108837 (2020).

    Article 

    Google Scholar 

  • 43.

    Sterne, T. K., Retchless, D., Allee, R. & Highfield, W. Predictive modelling of mesophotic habitats in the north-western Gulf of Mexico. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3281 (2020).

    Article 

    Google Scholar 

  • 44.

    Convertino, M., Annis, A. & Nardi, F. Information-theoretic portfolio decision model for optimal flood management. Environ. Model. Softw. 119, 258–274 (2019).

    Article 

    Google Scholar 

  • 45.

    Ardestani, E. G. & Mokhtari, A. Modeling the lumpy skin disease risk probability in central Zagros Mountains of Iran. Prev. Vet. Med. 176, 104887–104887. https://doi.org/10.1016/j.prevetmed.2020.104887 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Hanafi-Bojd, A. A., Vatandoost, H. & Yaghoobi-Ershadi, M. R. Climate change and the risk of malaria transmission in Iran. J. Med. Entomol. 57, 50–64. https://doi.org/10.1093/jme/tjz131 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Zhang, L., Jing, Z., Li, Z., Liu, Y. & Fang, S. Predictive modeling of suitable habitats for Cinnamomum Camphora (L.) presl using maxent model under climate change in China. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph16173185 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Peng, L.-P. et al. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. https://doi.org/10.1038/s41598-019-39449-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Li, J., Fan, G. & He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134141 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Zhang, K., Zhang, Y. & Tao, J. Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a maxent model. Forests https://doi.org/10.3390/f10020190 (2019).

    Article 

    Google Scholar 

  • 51.

    Sun, C. et al. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Crops Prod. 118, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Mahar, K. S., Palni, L. M. S., Ranade, S. A., Pande, V. & Rana, T. S. Molecular analyses of genetic variation and phylogenetic relationship in Indian soap nut (Sapindus L.) and closely related taxa of the family Sapindaceae. Meta Gene, S2214540017300336 (2017).

  • 53.

    Li, J., Chang, H., Liu, T. & Zhang, C. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agric. For. Meteorol. 275, 243–254. https://doi.org/10.1016/j.agrformet.2019.05.027 (2019).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Prevéy, J. S., Parker, L. E., Harrington, C. A., Lamb, C. T. & Proctor, M. F. Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agric. For. Meteorol. 280, 107803 (2020).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Adeyemi, T. O., Ogundipe, O. T. & Olowokudejo, J. D. Species distribution modelling of family Sapindaceae in West Africa. Int. J. Bot. 8, 45–49 (2012).

    Article 

    Google Scholar 

  • 56.

    Sun, C. et al. Association of fruit and seed traits of sapindus mukorossi germplasm with environmental factors in Southern China. Forests 8, 491 (2017).

    Article 

    Google Scholar 

  • 57.

    Sun, C. et al. Genetic diversity and association analyses of fruit traits with microsatellite ISSRs in Sapindus. J. For. Res. 30, 197–207 (2019).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Gao, Y. et al. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn. are influenced by crown architecture manipulation in the hilly terrain of Southeast China. Sci. Hortic. 240, 11–22 (2018).

    Article 

    Google Scholar 

  • 59.

    Zhang, Y.-Q. et al. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn. Sci. Hortic. 251, 136–149 (2019).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Liu, J. et al. Potential distribution and ecological characteristics of genus Sapindus in China based on MaxEnt model. Sci. Silvae Sin. 57, 1–12. https://doi.org/10.11707/j.1001-7488.20210501 (2021).

    Article 

    Google Scholar 

  • 61.

    Cabral, A. L., Sales, J. D. F., Barbosa, K. F., Rodrigues, A. A. & Filho, S. C. V. Dormancy breakage and germination in Sapindus saponaria L. seeds as a function of temperature and germination substrate. Semina 40, 3345–3358 (2019).

    CAS 

    Google Scholar 

  • 62.

    Jia, L. & Sun, C. Research progress of biodiesel tree Sapindus mukorossi. J. China Agric. Univ. 017, 191–196 (2012).

    Google Scholar 

  • 63.

    Wei, X., Dai, T., Liu, S. & Jia, L. Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn. J. Nanjing For. Univ. 42, 21–28 (2018).

    Google Scholar 

  • 64.

    Pal, A. K., Vaishnav, V., Meena, B., Pandey, N. & Rana, T. S. Adaptive fitness of Sapindus emarginatus Vahl populations towards future climatic regimes and the limiting factors of its distribution. Sci. Rep. 10, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Jayasinghe, S. L. & Kumar, L. Modeling the climate suitability of tea [Camellia sinensis(L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. For. Meteorol. 272–273, 102–117 (2019).

    ADS 
    Article 

    Google Scholar 

  • 66.

    He, X., Ning, X., Guo, Y. & Wei, H. Geographical distribution of Xanthoceras sorbifolia Bunge in China and predicting suitable area under the climate change scenario. Res. Agric. Modern. 40, 138–146 (2019).

    Google Scholar 

  • 67.

    GBIF.org (13 October 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.4d9kye.

  • 68.

    Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299 (2010).

    Article 

    Google Scholar 

  • 69.

    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).

    Article 

    Google Scholar 

  • 70.

    Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. https://doi.org/10.1111/2041-210x.12200 (2014).

    Article 

    Google Scholar 

  • 71.

    Beckmann, M. et al. glUV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372 (2014).

    Article 

    Google Scholar 

  • 72.

    Mao, J. F. & Wang, X. R. Distinct niche divergence characterizes the homoploid hybrid speciation of Pinus densata on the Tibetan Plateau. Am. Nat. 177(4), 424–439 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Li, G., Xu, G., Guo, K. & Du, S. Mapping the global potential geographical distribution of black locust (Robinia Pseudoacacia L.) using herbarium data and a maximum entropy model. Forests 5, 2773–2792 (2014).

    Article 

    Google Scholar 

  • 74.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • 75.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 76.

    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).

    Article 

    Google Scholar 

  • 77.

    Araujo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Ikhumhen, H. O., Li, T., Lu, S. & Matomela, N. Assessment of a novel data driven habitat suitability ranking approach for Larus relictus specie using remote sensing and GIS. Ecol. Model. 432, 109221 (2020).

    Article 

    Google Scholar 

  • 79.

    Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manage. 60, 304–313 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    A robot that finds lost items