Young, I. M. et al. The interaction of soil biota and soil structure under global change. Glob. Change Biol. 4, 703–712 (1998).
Google Scholar
Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theor. Ecol. Ser. 4, 77–106 (2007).
Google Scholar
Blakemore, R. & Hochkirch, A. Soil: restore earthworms to rebuild topsoil. Nature 545, 30–30 (2017).
Google Scholar
Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).
Google Scholar
Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).
Google Scholar
Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).
Google Scholar
Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 1–7 (2014).
Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).
Google Scholar
Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41, 711–717 (2009).
Google Scholar
Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018).
Google Scholar
Ruiz, S., Schymanski, S. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots—higher burrowing rates cost more. Vadose Zone J. https://doi.org/10.2136/vzj2017.01.0021 (2017).
Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).
Google Scholar
Ruiz, S., Or, D. & Schymanski, S. Soil penetration by earthworms and plant roots—mechanical energetics of bioturbation of compacted soils. PLoS ONE https://doi.org/10.1371/journal.pone.0128914 (2015).
Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Google Scholar
Abbott, I. Distribution of the native earthworm fauna of Australia—a continent-wide perspective. Soil Res. 32, 117–126 (1994).
Google Scholar
Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811 (2002).
Google Scholar
Nakamura, Y. Studies on the ecology of terrestrial oligochaeta: I. Sesonal variation in the population density of earthworms in alluvial soil grassland in Sapporo, Hokkaido. Appl. Entomol. Zool. 3, 89–95 (1968).
Google Scholar
Edwards, C. A. & Bohlen, P. J. Biology and Ecology of Earthworms. Vol. 3 (Springer Science & Business Media, 1996).
Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol. Fertil. Soils 11, 48–51 (1991).
Google Scholar
Johnston, A. S. Land management modulates the environmental controls on global earthworm communities. Glob. Ecol. Biogeogr. 28, 1787–1795 (2019).
Google Scholar
Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, Lampito mauritii. Proc. Indian Acad. Sci. 57, 290–295 (1963).
Google Scholar
Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and temperature on the survival and growth of Aporrectodea longa (Lumbricidae): the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745–753 (2003).
El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in different types of Egyptian soils. J. Appl. Ecol. 2, 271–287 (1965).
Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J. 65, 624–637 (2001).
Google Scholar
Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36, 367–379 (2000).
Google Scholar
Gerard, C. The influence of soil moisture, soil texture, drying conditions, and exchangeable cations on soil strength. Soil Sci. Soc. Am. J. 29, 641–645 (1965).
Google Scholar
Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J. Exp. Biol. 203, 2757–2770 (2000).
Google Scholar
Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. J. R. Soc. Interface 15, 20180127 (2018).
Google Scholar
McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea rosea. Biol. Fertil. Soils 5, 328–332 (1988).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Google Scholar
Burges, A. Soil Biology. (Elsevier, 2012).
Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant Roots. https://doi.org/10.3929/ethz-b-000280625 (2018).
Kretzschmar, A. & Bruchou, C. Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol. Fertil. Soils 12, 209–212 (1991).
Google Scholar
Eggleton, P., Inward, K., Smith, J., Jones, D. T. & Sherlock, E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 41, 1857–1865 (2009).
Google Scholar
Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34 (2007).
Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).
Google Scholar
Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The Mammals of Luzon Island: Biogeography and natural history of a Philippine fauna. (Johns Hopkins University Press, 2016).
Keller, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 16, 1–16 (2017).
Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic signatures of soil biological activity. Sci. Rep. 8, 10236 (2018).
Google Scholar
Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
Google Scholar
IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley). 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).
Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Google Scholar
Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57, 437–447 (2005).
Google Scholar
Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).
Google Scholar
Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74, 137–155 (1999).
Google Scholar
Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221 (2012).
Google Scholar
Muñoz Sabater, J. (ed Copernicus Climate Change Service (C3S) Climate Data Store (CDS)) (2019).
Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).
Google Scholar
Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties across a successional sand dune ecosystem in NW England. Eur. J. Soil Biol. 44, 554–558 (2008).
Google Scholar
Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers 5, 46–55 (2000).
Google Scholar
GBIF.org. GBIF Occurrence Download (Almidae). https://doi.org/10.15468/dl.xstqow (2020).
GBIF.org. GBIF Occurrence Download (Eudrilidae). https://doi.org/10.15468/dl.wghggg (2020).
GBIF.org. GBIF Occurrence Download (Glossoscolecidae). https://doi.org/10.15468/dl.3yj8pk (2020).
GBIF.org. GBIF Occurrence Download (Hormogastridae). https://doi.org/10.15468/dl.lzuwlg (2020).
GBIF.org. GBIF Occurrence Download (Lumbricidae). https://doi.org/10.15468/dl.vwqtsk (2020).
GBIF.org. GBIF Occurrence Download (Microchaetidae). https://doi.org/10.15468/dl.brqmht (2020).
GBIF.org. GBIF Occurrence Download (Moniligastridae). https://doi.org/10.15468/dl.ghccto (2020).
GBIF.org. GBIF Occurrence Download (Ocnerodrilidae). https://doi.org/10.15468/dl.dk97gk (2020).
GBIF.org. GBIF Occurrence Download (Octochaetidae). https://doi.org/10.15468/dl.xjw6kc (2020).
GBIF.org. GBIF Occurrence Download (Sparganophilidae). https://doi.org/10.15468/dl.9a4ojx (2020).
Ruiz, S. B., S; Or, D. Dataset for: Global Earthworm Distribution and Activity Windows Based on Soil Hydromechanical Constraints. https://doi.org/10.3929/ethz-b-000476615 (2021).
Source: Ecology - nature.com