in

Global earthworm distribution and activity windows based on soil hydromechanical constraints

[adace-ad id="91168"]
  • 1.

    Young, I. M. et al. The interaction of soil biota and soil structure under global change. Glob. Change Biol. 4, 703–712 (1998).

    Article 

    Google Scholar 

  • 2.

    Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theor. Ecol. Ser. 4, 77–106 (2007).

    Article 

    Google Scholar 

  • 3.

    Blakemore, R. & Hochkirch, A. Soil: restore earthworms to rebuild topsoil. Nature 545, 30–30 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).

    Article 

    Google Scholar 

  • 6.

    Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 1–7 (2014).

  • 8.

    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).

    Article 

    Google Scholar 

  • 9.

    Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41, 711–717 (2009).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018).

    Article 

    Google Scholar 

  • 11.

    Ruiz, S., Schymanski, S. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots—higher burrowing rates cost more. Vadose Zone J. https://doi.org/10.2136/vzj2017.01.0021 (2017).

  • 12.

    Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).

    Article 

    Google Scholar 

  • 13.

    Ruiz, S., Or, D. & Schymanski, S. Soil penetration by earthworms and plant roots—mechanical energetics of bioturbation of compacted soils. PLoS ONE https://doi.org/10.1371/journal.pone.0128914 (2015).

  • 14.

    Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Abbott, I. Distribution of the native earthworm fauna of Australia—a continent-wide perspective. Soil Res. 32, 117–126 (1994).

    Article 

    Google Scholar 

  • 16.

    Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811 (2002).

    Article 

    Google Scholar 

  • 17.

    Nakamura, Y. Studies on the ecology of terrestrial oligochaeta: I. Sesonal variation in the population density of earthworms in alluvial soil grassland in Sapporo, Hokkaido. Appl. Entomol. Zool. 3, 89–95 (1968).

    Article 

    Google Scholar 

  • 18.

    Edwards, C. A. & Bohlen, P. J. Biology and Ecology of Earthworms. Vol. 3 (Springer Science & Business Media, 1996).

  • 19.

    Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol. Fertil. Soils 11, 48–51 (1991).

    Article 

    Google Scholar 

  • 20.

    Johnston, A. S. Land management modulates the environmental controls on global earthworm communities. Glob. Ecol. Biogeogr. 28, 1787–1795 (2019).

    Article 

    Google Scholar 

  • 21.

    Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, Lampito mauritii. Proc. Indian Acad. Sci. 57, 290–295 (1963).

    CAS 

    Google Scholar 

  • 22.

    Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and temperature on the survival and growth of Aporrectodea longa (Lumbricidae): the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745–753 (2003).

    Google Scholar 

  • 23.

    El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in different types of Egyptian soils. J. Appl. Ecol. 2, 271–287 (1965).

  • 24.

    Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J. 65, 624–637 (2001).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36, 367–379 (2000).

    Article 

    Google Scholar 

  • 26.

    Gerard, C. The influence of soil moisture, soil texture, drying conditions, and exchangeable cations on soil strength. Soil Sci. Soc. Am. J. 29, 641–645 (1965).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J. Exp. Biol. 203, 2757–2770 (2000).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. J. R. Soc. Interface 15, 20180127 (2018).

    Article 

    Google Scholar 

  • 29.

    McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea rosea. Biol. Fertil. Soils 5, 328–332 (1988).

    Google Scholar 

  • 30.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • 31.

    Burges, A. Soil Biology. (Elsevier, 2012).

  • 32.

    Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant Roots. https://doi.org/10.3929/ethz-b-000280625 (2018).

  • 33.

    Kretzschmar, A. & Bruchou, C. Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol. Fertil. Soils 12, 209–212 (1991).

    Article 

    Google Scholar 

  • 34.

    Eggleton, P., Inward, K., Smith, J., Jones, D. T. & Sherlock, E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 41, 1857–1865 (2009).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34 (2007).

  • 36.

    Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).

    Article 

    Google Scholar 

  • 37.

    Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The Mammals of Luzon Island: Biogeography and natural history of a Philippine fauna. (Johns Hopkins University Press, 2016).

  • 38.

    Keller, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 16, 1–16 (2017).

  • 39.

    Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic signatures of soil biological activity. Sci. Rep. 8, 10236 (2018).

    Article 

    Google Scholar 

  • 40.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    Article 

    Google Scholar 

  • 41.

    IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley). 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 42.

    Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 

    Google Scholar 

  • 43.

    Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57, 437–447 (2005).

    Article 

    Google Scholar 

  • 44.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74, 137–155 (1999).

    Article 

    Google Scholar 

  • 46.

    Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221 (2012).

    Article 

    Google Scholar 

  • 47.

    Muñoz Sabater, J. (ed Copernicus Climate Change Service (C3S) Climate Data Store (CDS)) (2019).

  • 48.

    Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article 

    Google Scholar 

  • 49.

    Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties across a successional sand dune ecosystem in NW England. Eur. J. Soil Biol. 44, 554–558 (2008).

    Article 

    Google Scholar 

  • 50.

    Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers 5, 46–55 (2000).

    CAS 
    Article 

    Google Scholar 

  • 51.

    GBIF.org. GBIF Occurrence Download (Almidae). https://doi.org/10.15468/dl.xstqow (2020).

  • 52.

    GBIF.org. GBIF Occurrence Download (Eudrilidae). https://doi.org/10.15468/dl.wghggg (2020).

  • 53.

    GBIF.org. GBIF Occurrence Download (Glossoscolecidae). https://doi.org/10.15468/dl.3yj8pk (2020).

  • 54.

    GBIF.org. GBIF Occurrence Download (Hormogastridae). https://doi.org/10.15468/dl.lzuwlg (2020).

  • 55.

    GBIF.org. GBIF Occurrence Download (Lumbricidae). https://doi.org/10.15468/dl.vwqtsk (2020).

  • 56.

    GBIF.org. GBIF Occurrence Download (Microchaetidae). https://doi.org/10.15468/dl.brqmht (2020).

  • 57.

    GBIF.org. GBIF Occurrence Download (Moniligastridae). https://doi.org/10.15468/dl.ghccto (2020).

  • 58.

    GBIF.org. GBIF Occurrence Download (Ocnerodrilidae). https://doi.org/10.15468/dl.dk97gk (2020).

  • 59.

    GBIF.org. GBIF Occurrence Download (Octochaetidae). https://doi.org/10.15468/dl.xjw6kc (2020).

  • 60.

    GBIF.org. GBIF Occurrence Download (Sparganophilidae). https://doi.org/10.15468/dl.9a4ojx (2020).

  • 61.

    Ruiz, S. B., S; Or, D. Dataset for: Global Earthworm Distribution and Activity Windows Based on Soil Hydromechanical Constraints. https://doi.org/10.3929/ethz-b-000476615 (2021).


  • Source: Ecology - nature.com

    Seasonal change is a major driver of soil resistomes at a watershed scale

    The future of the IoT (batteries not required)