in

Global effects of land-use intensity on local pollinator biodiversity

  • 1.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article 

    Google Scholar 

  • 2.

    Steffan-Dewenter, I. & Westphal, C. The interplay of pollinator diversity, pollination services and landscape change. J. Appl. Ecol. 45, 737–741 (2007).

    Article 

    Google Scholar 

  • 3.

    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).

    Article 

    Google Scholar 

  • 5.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    IPBES (2017). The Assessment Report on Pollinators, Pollination and Food Production. Bonn.

  • 7.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Embury-Dennis, T. The Independent. 19 October. (2017) http://www.independent.co.uk/news/science/flying-insects-numbers-drop-ecological-armageddon-75-per-cent-plummet-a8008406.html. Accessed 03 Dec 2020.

  • 9.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 10.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406. (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Article 

    Google Scholar 

  • 15.

    Saunders, M. E., Janes, J. K. & O’hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).

    Article 

    Google Scholar 

  • 16.

    De Palma, A. et al. Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Macgregor, C. J. et al. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Millard, J. W., Freeman, R. & Newbold, T. Text‐analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography 43, 44–59 (2020).

    Article 

    Google Scholar 

  • 20.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. Ser. B 274, 303–313 (2007).

    Google Scholar 

  • 21.

    European Commission. EU Pollinators Initiative (European Commission, Brussels, 2018).

  • 22.

    Food and Agriculture Organization. The International Pollinator Initiative plan of action 2018-2030 (FAO, Rome, 2018).

  • 23.

    Secretariat of the Convention on Biological Diversity. Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, Montreal, 2020).

  • 24.

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

    Article 

    Google Scholar 

  • 25.

    Le B. Hooke, R., Martín-Duque, J. F. and Pedraza, J. Land transformation by humans: a review. GSA Today 22, 4–10 (2012).

  • 26.

    Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensifcation and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. B. 268, 25–29 (2001).

    Article 

    Google Scholar 

  • 27.

    Benton, T. G. et al. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).

    Article 

    Google Scholar 

  • 28.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

    Article 

    Google Scholar 

  • 29.

    Tscharntke, T. et al. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 12, 354–363 (2002).

    Google Scholar 

  • 30.

    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. Lond. Biol. Sci. 270, 955–961 (2003).

    Article 

    Google Scholar 

  • 33.

    Xiao, Y. et al. The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecol. 217, 857–868 (2016).

    Article 

    Google Scholar 

  • 34.

    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).

    Article 

    Google Scholar 

  • 35.

    Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Sánchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS One. 9, e94482 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297 (1993).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Schmuck, R., Stadler, T. & Schmidt, H.-W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag. Sci. 59, 279–286 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).

    Article 

    Google Scholar 

  • 41.

    Ridding, L. E. et al. Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol. 221, 377–394 (2020).

    Article 

    Google Scholar 

  • 42.

    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Michener, C. D. The Bees of the World (Johns Hopkins University Press 2007).

  • 44.

    Deans, A. M. et al. Hoverfly (Syrphidae) communities respond to varying structural retention after harvesting in Canadian peatland black spruce forests. Environ. Entomol. 36, 308–318 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Kuussaari, M. et al. Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric. Ecosyst. Environ. 122, 366–376 (2007).

    Article 

    Google Scholar 

  • 46.

    Tscharntke, T. et al. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89, 944–951 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Öckinger, E. et al. Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13, 969–979 (2010).

    PubMed 

    Google Scholar 

  • 49.

    Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B 282, 20150164 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Montero-Castaño, A. & Vilà, M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884–893 (2012).

    Article 

    Google Scholar 

  • 51.

    De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52, 1567–1577 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Aguirre-Gutiérrez, J. et al. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 1–13. (2016).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Shuler, R. E., Roulston, T. H. & Farris, G. E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Economic Entomol. 98, 790–795 (2005).

    Article 

    Google Scholar 

  • 54.

    Cusser, S., Neff, J. L. & Jha, S. Land-use history drives contemporary pollinator community similarity. Landsc. Ecol. 33, 1335–1351 (2018).

    Article 

    Google Scholar 

  • 55.

    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 1, 193–196 (1996).

    Article 

    Google Scholar 

  • 56.

    Høye, T., Post, E., Schmidt, N., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Williams, J. J., Bates, A. E. & Newbold, T. Human‐dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43, 391–405 (2020).

    Article 

    Google Scholar 

  • 59.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecol. Evolution 7, 145–188 (2017).

    Article 

    Google Scholar 

  • 63.

    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Lazaro, A., Tscheulin, T., Devalez, J., Nakas, G. & Petanidou, T. Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecol. Entomol. 41, 400–412 (2016).

    Article 

    Google Scholar 

  • 65.

    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Ollerton, J., Tarrant, S. & Winfree, R. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar 

  • 67.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Outhwaite, C. L. et al. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 69.

    Rader, R. et al. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Diversity Distrib. 20, 908–917 (2014).

    Article 

    Google Scholar 

  • 70.

    Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10. (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • 72.

    DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Weiner, C. N. et al. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).

    Article 

    Google Scholar 

  • 75.

    Parker, W. E. & Howard, J. J. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric. For. Entomol. 3, 85–98 (2001).

    Article 

    Google Scholar 

  • 76.

    Jauker, F. et al. Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).

    Article 

    Google Scholar 

  • 77.

    Haenke, S. et al. Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J. Appl. Ecol. 46, 1106–1114 (2009).

    Article 

    Google Scholar 

  • 78.

    Speight, M. C. D. Species Accounts of European Syrphidae, 2017. Syrph Net. Database Eur. Syrphidae (Diptera) 97, 1–294 (2017).

    Google Scholar 

  • 79.

    Easton, A. H. & Goulson, D. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLoS One 8, e54819 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Maggi, F. et al. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 1–20. (2019).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).

    Article 

    Google Scholar 

  • 82.

    Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Kevan, P. G. Blueberry crops in Nova Scotia and New Brunswick—pesticides and crop reductions. Can. J. Agric. Econ. 25, 61–64 (1977).

    Article 

    Google Scholar 

  • 84.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Ollerton J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, Exeter, 2021).

  • 86.

    Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).

    Article 

    Google Scholar 

  • 87.

    Brittain, C. A. et al. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115 (2010).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Melidonis, C. A. & Peter, C. I. Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. South Afr. J. Bot. 97, 9–15 (2015).

    Article 

    Google Scholar 

  • 89.

    Ollerton, J. & Liede, S. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62, 593–610 (1997).

    Article 

    Google Scholar 

  • 90.

    Dutton, E. M. & Frederickson, M. E. Why ant pollination is rare: new evidence and implications of the antibiotic hypothesis. Arthropod-Plant Interact. 6, 561–569 (2012).

    Article 

    Google Scholar 

  • 91.

    Dukas, R. & Morse, D. H. Crab spiders affect flower visitation by bees. Oikos 101, 157–163 (2003).

    Article 

    Google Scholar 

  • 92.

    Myers, S. A., Donnellan, S. & Kleindorfer, S. Rainfall can explain adaptive phenotypic variation with high gene flow in the New Holland honeyeater (Phylidonyris novaehollandiae). Ecol. Evol. 2, 2397–2412 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 94.

    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).

    Article 

    Google Scholar 

  • 95.

    Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 96.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 97.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Millard, J. et al. Global_effects_of_land-use_intensity_on_local_pollinator-biodiversity (Version v1.0.0). Zenodo https://doi.org/10.5281/zenodo.4593493 (2021).


  • Source: Ecology - nature.com

    Ice melts on US-Sudan relations, providing new opportunities

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought