in

Global patterns of geo-ecological controls on the response of soil respiration to warming

  • 1.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article 

    Google Scholar 

  • 3.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Houghton, R. A. The contemporary carbon cycle. Treatise Geochem. 8, 473–513 (2003).

    Article 

    Google Scholar 

  • 5.

    Paterson, E., Midwood, A. J. & Millard, P. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol. 184, 19–33 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Bader, M. K. F. & Körner, C. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob. Change Biol. 16, 2830–2843 (2010).

    Article 

    Google Scholar 

  • 7.

    Reynolds, L. L., Lajtha, K., Bowden, R. D., Johnson, B. R. & Bridgham, S. D. The carbon quality–temperature hypothesis does not consistently predict temperature sensitivity of soil organic matter mineralization in soils from two manipulative ecosystem experiments. Biogeochemistry 136, 249–260 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil–carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Pries, C. E. H., Castanha, C., Porras, R. & Torn, M. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2019).

    Article 

    Google Scholar 

  • 14.

    Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Koven, C. D. et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Gonzalez-Dominguez, B. et al. Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics. Sci. Rep. 9, 6422 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Blankinship, J. C. et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140 (2018).

  • 23.

    Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Angst, G. et al. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 122, 19–30 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71 (2017).

    Article 

    Google Scholar 

  • 26.

    Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).

    Article 

    Google Scholar 

  • 29.

    Varney, R. M. et al. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 11, 5544 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Wu, D., Piao, S., Liu, Y., Ciais, P. & Yao, Y. Evaluation of CMIP5 Earth System Models for the spatial patterns of biomass and soil carbon turnover times and their linkage with climate. J. Clim. 31, 5947–5960 (2018).

    Article 

    Google Scholar 

  • 31.

    Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).

    Article 

    Google Scholar 

  • 32.

    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Foereid, B., Ward, D., Mahowald, N., Paterson, E. & Lehmann, J. The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth Syst. Dynam. 5, 211–221 (2014).

    Article 

    Google Scholar 

  • 35.

    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article 

    Google Scholar 

  • 36.

    Post, H., Vrugt, J. A., Fox, A., Vereecken, H. & Hendricks Franssen, H. J. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites. J. Geophys. Res. Biogeosci. 122, 661–689 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Bailey, V. L. et al. Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks. Glob. Change Biol. 24, 895–905 (2018).

    Article 

    Google Scholar 

  • 39.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article 

    Google Scholar 

  • 40.

    Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32, 306–323 (2018).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Cusack, D. F. et al. Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon. Soil Biol. Biochem. 124, 199–209 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Wang, X. et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem. 42, 1728–1734 (2010).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Warner, D. L., Bond‐Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Todd-Brown, K., Zheng, B. & Crowther, T. W. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty. Biogeosciences 15, 3659–3671 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Haddix, M. L. et al. The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci. Soc. Am. J. 75, 56–68 (2011).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Lara, M. J., Lin, D. H., Andresen, C., Lougheed, V. L. & Tweedie, C. E. Nutrient release from permafrost thaw enhances CH4 emissions from Arctic tundra wetlands. J. Geophys. Res. Biogeosci. 124, 1560–1573 (2019).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Prater, I. et al. From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences 17, 3367–3383 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).

    Article 

    Google Scholar 

  • 53.

    Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).

    Article 

    Google Scholar 

  • 55.

    Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2019).

    Article 

    Google Scholar 

  • 56.

    Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

    Article 

    Google Scholar 

  • 57.

    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

  • 58.

    Crowther, T. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

  • 59.

    R Core Team. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 60.

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    Article 

    Google Scholar 

  • 62.

    Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).

    Article 

    Google Scholar 

  • 63.

    Chen, X., Zhao, P. L. & Zhang, J. A note on ANOVA assumptions and robust analysis for a cross‐over study. Stat. Med. 21, 1377–1386 (2002).

    Article 

    Google Scholar 

  • 64.

    McGuinness, K. A. Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption. Austral. Ecol. 27, 681–688 (2002).

    Article 

    Google Scholar 

  • 65.

    Zimmerman, D. W. & Zumbo, B. D. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J. Exp. Educ. 62, 75–86 (1993).

    Article 

    Google Scholar 

  • 66.

    Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).

    Google Scholar 

  • 67.

    Thornley, J. & Cannell, M. Soil carbon storage response to temperature: an hypothesis. Ann. Bot. 87, 591–598 (2001).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Lloyd, J. & Taylor, J. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

  • 69.

    Libohova, Z. et al. The anatomy of uncertainty for soil pH measurements and predictions: implications for modellers and practitioners. Eur. J. Soil Sci. 70, 185–199 (2019).

    Article 

    Google Scholar 

  • 70.

    Kirkby, C. A. et al. Carbon–nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 60, 77–86 (2013).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Beer, C. et al. Temporal and among‐site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23, GB2018 (2009).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543 (2014).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).

    Article 

    Google Scholar 

  • 75.

    Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning Vol. 1 (Springer, 2001).

  • 76.

    Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle regression. Ann. Stat. 32, 407–499 (2004).

    Article 

    Google Scholar 

  • 77.

    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    Article 

    Google Scholar 

  • 78.

    Kuhn, M. & Johnson, K. Applied Predictive Modeling Vol. 26 (Springer, 2013).

  • 79.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • 80.

    Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

  • 81.

    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).

    Google Scholar 

  • 82.

    Quinlan, J. R. Learning with Continuous Classes in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (eds Adams, A. & Sterling, L.) 343–348 (World Scientific, 1992).

  • 83.

    Boulesteix, A. L., Janitza, S., Kruppa, J. & König, I. R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIRES Data Mining Knowl. Discov. 2, 493–507 (2012).

    Article 

    Google Scholar 

  • 84.

    Xu, Q.-S. & Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 56, 1–11 (2001).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).

    Google Scholar 

  • 86.

    James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

  • 87.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28 (2008).

  • 88.

    Grömping, U. Variable importance assessment in regression: linear regression versus random forest. Am. Statistician 63, 308–319 (2009).

    Article 

    Google Scholar 

  • 89.

    Wei, P., Lu, Z. & Song, J. Variable importance analysis: a comprehensive review. Reliab. Eng. Syst. Saf. 142, 399–432 (2015).

    Article 

    Google Scholar 

  • 90.

    Yang, R.-M. et al. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 60, 870–878 (2016).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R J. 9, 421–436 (2017).

    Article 

    Google Scholar 

  • 92.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Land Cover CCI Product User Guide Version 2 (ESA, 2017); maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

  • 94.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 
    CAS 

    Google Scholar 

  • 95.

    Moran, P. A. A test for the serial independence of residuals. Biometrika 37, 178–181 (1950).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Accelerating AI at the speed of light

    Exploring the future of humanitarian technology