in

Global warming decreases connectivity among coral populations

  • 1.

    Cesar, H., Burke, L. & Pet-Soede L. The Economics of Worldwide Coral Reef Degradation (Cesar Environmental Economics Consulting, 2003).

  • 2.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article 

    Google Scholar 

  • 4.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Science 359, 80–83 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Grottoli, A. G., Rodrigues, L. J. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).

    Article 

    Google Scholar 

  • 7.

    Underwood, J. N., Smith, L. D., van Oppen, M. J. H. & Gilmour, J. P. Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).

    Article 

    Google Scholar 

  • 8.

    Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).

    Article 

    Google Scholar 

  • 9.

    Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).

    Article 

    Google Scholar 

  • 10.

    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).

    Article 

    Google Scholar 

  • 11.

    Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).

    Article 

    Google Scholar 

  • 12.

    van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617 (2017).

    Article 

    Google Scholar 

  • 13.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 14.

    Nishikawa, A. & Sakai, K. Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool. Sci. 22, 391–399 (2005).

    Article 

    Google Scholar 

  • 15.

    Connolly, S. R. & Baird, A. H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 3572–3583 (2010).

    Article 

    Google Scholar 

  • 16.

    Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94, 650–659 (2013).

    Article 

    Google Scholar 

  • 17.

    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).

    Article 

    Google Scholar 

  • 18.

    Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).

    Article 

    Google Scholar 

  • 19.

    Burgess, S. C. et al. Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).

    Article 

    Google Scholar 

  • 20.

    Woolsey, E. S., Keith, S. A., Byrne, M., Schmidt-Roach, S. & Baird, A. H. Latitudinal variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs 34, 471–478 (2015).

    Article 

    Google Scholar 

  • 21.

    Rodriguez-Lanetty, M., Harii, S. & Hoegh-Guldberg, O. Early molecular responses of coral larvae to hyperthermal stress. Mol. Ecol. 18, 5101–5114 (2009).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Andutta, F. P., Kingsford, M. J. & Wolanski, E. ‘Sticky water’ enables the retention of larvae in a reef mosaic. Estuar. Coast. Shelf Sci. 54, 655–668 (2012).

    Google Scholar 

  • 23.

    Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).

    Article 

    Google Scholar 

  • 24.

    Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).

    Article 

    Google Scholar 

  • 25.

    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).

    Article 

    Google Scholar 

  • 26.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70, 377–396 (2002).

    Google Scholar 

  • 28.

    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).

    Article 

    Google Scholar 

  • 30.

    Leis, J. M. Nearshore distributional gradients of larval fish (15 taxa) and planktonic crustaceans (6 taxa) in Hawaii. Mar. Biol. 72, 89–97 (1982).

    Article 

    Google Scholar 

  • 31.

    Kraines, S. B., Yanagi, T., Isobe, M. & Komiyama, H. Wind-wave driven circulation on the coral reef at Bora Bay, Miyako Island. Coral Reefs 17, 133–143 (1998).

    Article 

    Google Scholar 

  • 32.

    Paris, C. B. & Cowen, R. K. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr. 49, 1964–1979 (2004).

    Article 

    Google Scholar 

  • 33.

    Keshavmurthy, S., Fontana, S., Mezaki, T., Gonzalez, L. C. & Chen, C. A. Doors are closing on early development in corals facing climate change. Sci. Rep. 4, 5633 (2014).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Thomas, C. J. et al. Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol. Model. 272, 160–174 (2014).

    Article 

    Google Scholar 

  • 35.

    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).

    Article 

    Google Scholar 

  • 36.

    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).

    Article 

    Google Scholar 

  • 37.

    Gleason, D. F. & Hofmann, D. K. Coral larvae: from gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).

    Article 

    Google Scholar 

  • No pervasive relationship between species size and local abundance trends

    Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics