Mckinney, M. L. Effects of urbanization on species richness : a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Anderson, P. M. L., Okereke, C., Rudd, A. & Parnell, S. Urbanization, biodiversity and ecosystem services: challenges and opportunities a global assessment (Springer, Berlin, 2013). https://doi.org/10.1007/978-94-007-7088-1.
Google Scholar
Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).
Biard, C. et al. Growing in Cities: An Urban Penalty for Wild Birds? A Study of Phenotypic Differences between Urban and Rural Great Tit Chicks (Parus major). Front. Ecol. Evol. 5, (2017). https://doi.org/10.3389/fevo.2017.00079
Seress, G. et al. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 43, 403–414 (2012).
Glądalski, M. et al. Differences in the breeding success of Blue Tits Cyanistes caeruleus between a forest and an urban area : a long-term study. Acta Ornithol. 52, 59–68 (2017).
Teglhøj, P. G. A comparative study of insect abundance and reproductive success of barn swallows Hirundo rustica in two urban habitats. J. Avian Biol. 48, 846–853 (2017).
Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis (Lond. 1859). 151, 1–18 (2009).
Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).
Google Scholar
Capilla-Lasheras, P. et al. A global meta-analysis reveals more variable life histories in urban birds compared to their non-urban neighbours. Preprint (2021). https://doi.org/10.1101/2021.09.24.461498.
Caizergues, A. et al. An avian urban morphotype: how the city environment shapes greattit morphology at different life stages. Urban Ecosyst. 24, 929–941 (2021).
Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84 (2021).
Google Scholar
Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hungaricae 61, 373–408 (2015).
Bailly, J. et al. From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. J. Ornithol. 157, 377–392 (2016).
Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156 (2018).
Google Scholar
Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: an experimental study on great tits Parus major. J. Anim. Ecol. 89, 1570–1580 (2020).
Google Scholar
Krištín, A. & Patočka, J. Birds as predators of Lepidoptera: Selected examples. Biologia (Bratisl). 52, 319–326 (1997).
Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).
Ramsay, S. L. & Houston, D. C. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis (Lond. 1859). 145, 227–232 (2003).
Partali, V., Liaaen-Jensen, S., Slagsvold, T. & Lifjeld, J. T. Carotenoids in food chain studies—II. The food chain of Parus SPP. Monitored by carotenoid analysis. Comp. Biochem. Physiol. Part B Comp. Biochem. 87, 885–888 (1987).
Isaksson, C., Johansson, A. & Andersson, S. Egg yolk carotenoids in relation to habitat and reproductive investment in the great Tit Parus major. Physiol. Biochem. Zool. 81, 112–118 (2008).
Google Scholar
Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).
Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Linn. Soc. 99, 708–717 (2010).
Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).
Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).
Google Scholar
Nadolski, J., Marciniak, B., Loga, B., Michalski, M. & Bańbura, J. Long-term variation in the timing and height of annual peak abundance of caterpillars in tree canopies: Some effects on a breeding songbird. Ecol. Indic. 121, 107120 (2021).
Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life?. Glob. Chang. Biol. 24, 1452–1469 (2018).
Google Scholar
Miyashita, T., Shinkai, A. & Chida, T. The effects of forest fragmentation on web spider communities in urban areas. Biol. Conserv. 86, 357–364 (1998).
Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).
Google Scholar
Ishitani, M., Kotze, D. J. & Niemelä, J. Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography (Cop.) 26, 481–489 (2003).
Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014 (2017).
Google Scholar
Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388 (2020).
Google Scholar
Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572 (2007).
Sinkovics, C. A fiókatáplálék mennyisége , minősége és szezonalitása városi és erdei széncinege (Parus major) populációkban. (Szent István University, 2014).
Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2005).
Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).
Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).
Google Scholar
Riddington, R. & Gosler, A. G. Differences in reproductive success and parental qualities between habitats in the Great Tit Parus major. Ibis (Lond. 1859) 137, 371–378 (1995).
Mennechez, G. & Clergeau, P. Effect of urbanisation on habitat generalists: starlings not so flexible?. Acta Oecologica 30, 182–191 (2006).
Google Scholar
Shawkey, M. D., Bowman, R. & Woolfenden, G. E. Why is brood reduction in Florida Scrub-Jays higher in suburban than in wildland habitats?. Can. J. Zool. 82, 1427–1435 (2004).
Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).
Sauter, A., Bowman, R., Schoech, S. J. & Pasinelli, G. Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food ?. Behav. Ecol. Sociobiol. 60, 465–474 (2006).
Heiss, R. S., Clark, A. B. & McGowan, K. J. Growth and nutritional state of American Crow nestlings vary between urban and rural habitats. Ecol. Appl. 19, 829–839 (2009).
Google Scholar
Graveland, J. & van Gijzen, T. Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82, 299–314 (1994).
Ricklefs, R. In Avian Biology (eds. Farner, D., King, J. & Parkes, K.) 1–83 (Academic Press, 1983).
Peach, W. J., Vincent, K. E., Fowler, J. A. & Grice, P. V. Reproductive success of house sparrows along an urban gradient. Anim. Conserv. 11, 493–503 (2008).
Johnston, R. D. Effects of diet quality on the nestling growth of a wild insectivorous passerine, the house martin Delichon urbica. Funct. Ecol. 7, 255–266 (1993).
Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects Blue Tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).
Pagani-Núñez, E. & Senar, J. C. One hour of sampling is enough: great tit Parus major parents feed their nestlings consistently across time. Acta Ornithol. 48, 194–200 (2013).
Betts, M. M. The behaviour of a pair of great tits at the nest. Br. Birds 48, 77–82 (1955).
Van Balen, J. H. A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 61, 1–93 (1973).
Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. F. Ornithol. 88, 299–312 (2017).
Free Software Foundation. vlc. (1991).
Sinkovics, C., Seress, G., Fábián, V., Sándor, K. & Liker, A. Obtaining accurate measurements of the size and volume of insects fed to nestlings from video recordings. J. F. Ornithol. 89, 165–172 (2018).
R Core Team. R: A language and environment for statistical computing. (2017). Available at: https://www.r-project.org/.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). R package version 3.1-153, https://CRAN.R-project.org/package=nlme.
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2018). R package version 1.3.1. https://CRAN.R-project.org/package=emmeans
Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, Berlin, 2002).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2011).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 3, 346–363 (2008).
Google Scholar
Ruxton, G. D. & Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 19, 690–693 (2008).
Bolker, B. M. et al. Generalized linear mixed models :a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
Google Scholar
Vincze, E. et al. Great tits take greater risk toward humans and sparrowhawks in urban habitats than in forests. Ethology 125, 686–701 (2019).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).
Google Scholar
Serrano-Davies, E. & Sanz, J. J. Habitat structure modulates nestling diet composition and fitness of Blue Tits Cyanistes caeruleus in the Mediterranean region. Bird Study 64, 295–305 (2017).
Senar, J. C., Manzanilla, A. & Mazzoni, D. A comparison of the diet of urban and forest great tits in a Mediterranean habitat. Anim. Biodivers. Conserv. 44(2), 321–327 (2021).
Narango, D. L., Tallamy, D. W. & Marra, P. P. Nonnative plants reduce population growth of an insectivorous bird. Proc. Natl. Acad. Sci. 115, 201809259 (2018).
de Satgé, J. et al. Urbanisation lowers great tit Parus major breeding success at multiple spatial scales. J. Avian Biol. 50, (2019). https://doi.org/10.1111/jav.02108
Baldan, D. & Ouyang, J. Q. Urban resources limit pair coordination over offspring provisioning. Sci. Rep. 10, 15888 (2020).
Google Scholar
Mennechez, G. & Clergeau, P. In Avian Ecology and Conservation in an Urbanizing World (ed. Marzluff, J. M.) 275–287 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_13
Meyrier, E. et al. Happy to breed in the city? Urban food resources limit reproductive output in Western Jackdaws. Ecol. Evol. 7, 1363–1374 (2017).
Google Scholar
Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol. Zool. 70, 631–638 (1997).
Google Scholar
Warren, M. S. et al. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. 118, e2002551117 (2021).
Google Scholar
Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, 1–22 (2010).
Tallamy, D. W. & Shriver, W. G. Are declines in insects and insectivorous birds related?. Condor 123, 1–8 (2021).
Mackenzie, J. A., Hinsley, S. A. & Harrison, N. M. Parid foraging choices in urban habitat and the consequences for fitness. Ibis (Lond. 1859) 156, 591–605 (2014).
Narango, D. L., Tallamy, D. W. & Marra, P. P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 213, 42–50 (2017).
Cholewa, M. & Wesołowski, T. Nestling food of European hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons?. Acta Ornithol. 46, 105–116 (2011).
Source: Ecology - nature.com