in

Great tits who remember more accurately have difficulty forgetting, but variation is not driven by environmental harshness

  • 1.

    Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. The importance of heritability estimates for understanding the evolution of cognition: A response to comments on Croston et al. Behav. Ecol. 26, 1463–1464 (2015).

    Article 

    Google Scholar 

  • 2.

    Langley, E. J. G. et al. Heritability and correlations among learning and inhibitory control traits. Behav. Ecol. 1, 1–9 (2020).

    Google Scholar 

  • 3.

    Boogert, N. J., Madden, J. R., Morand-Ferron, J. & Thornton, A. Measuring and understanding individual differences in cognition. Philos. Trans. R. Soc. B. 373, 2017080 (2018).

    Google Scholar 

  • 4.

    Sonnenberg, B. R., Branch, C. L., Pitera, A. M., Bridge, E. & Pravosudov, V. V. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 29, 1–7 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Benedict, L. M. et al. Elevation-related differences in annual survival of adult food-caching mountain chickadees are consistent with natural selection on spatial cognition. Behav. Ecol. Sociobiol. 74, 2817 (2020).

    Article 

    Google Scholar 

  • 6.

    Shaw, R. C., MacKinlay, R. D., Clayton, N. S. & Burns, K. C. Memory performance influences male reproductive success in a wild bird. Curr. Biol. 29, 1498–1502 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Cauchoix, M. & Chaine, A. S. How can we study the evolution of animal minds?. Front. Psychol. 7, 1–18 (2016).

    Article 

    Google Scholar 

  • 8.

    Janmaat, K. R. L. et al. Spatio-temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit. Am. J. Primatol. 78, 626–645 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Hampton, R. R. & Shettleworth, S. J. Hippocampus and memory in a food-storing and in a nonstoring bird species. Behav. Neurosci. 110, 946–964 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    LaDage, L. D., Roth, T. C., Cerjanic, A. M., Sinervo, B. & Pravosudov, V. V. Spatial memory: Are lizards really deficient?. Biol. Lett. 8, 939–941 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Milton, K. Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. Am. Anthropol. 83, 534–548 (1981).

    Article 

    Google Scholar 

  • 13.

    Thornton, A. & Boogert, N. J. Animal cognition: The benefits of remembering. Curr. Biol. 29, R324–R327 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Pravosudov, V. V. & Clayton, N. S. A test of the adaptive specialization hypothesis: Population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav. Neurosci. 116, 515–522 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Morand-Ferron, J., Hermer, E., Jones, T. B. & Thompson, M. J. Environmental variability, the value of information, and learning in winter residents. Anim. Behav. 147, 137–145 (2019).

    Article 

    Google Scholar 

  • 16.

    Hermer, E., Cauchoix, M., Chaine, A. S. & Morand-Ferron, J. Elevation-related difference in serial reversal learning ability in a nonscatter hoarding passerine. Behav. Ecol. 29, 840–847 (2018).

    Article 

    Google Scholar 

  • 17.

    Boyle, A. W., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).

    Article 

    Google Scholar 

  • 18.

    Roth, T. C. II. & Pravosudov, V. V. Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: A large-scale comparison. Proc. R. Soc. B 276, 401–405 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Roth, T. C. II., LaDage, L. D. & Pravosudov, V. V. Learning capabilities enhanced in harsh environments: A common garden approach. Proc. R. Soc. B 277, 3187–3193 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Tello-Ramos, M. C., Branch, C. L., Kozlovsky, D. Y., Pitera, A. M. & Pravosudov, V. V. Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the question. Anim. Behav. 1, 1–8 (2018).

    Google Scholar 

  • 22.

    Gonzalez, R. C., Behrend, E. R. & Bitterman, M. E. Reversal learning and forgetting in bird and fish. Science 158, 519–521 (1967).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 23.

    Strang, C. G. & Sherry, D. F. Serial reversal learning in bumblebees (Bombus impatiens). Anim. Cogn. 17, 723–734 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Herszage, J. & Censor, N. Modulation of learning and memory: A shared framework for interference and generalization. Neuroscience 392, 270–280 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Squier, L. H. Reversal learning improvement in the fish Astronotus ocellatus (Oscar). Psychon. Sci. 14, 143–144 (1969).

    Article 

    Google Scholar 

  • 26.

    Miyashita, Y., Nakajima, S. & Imada, H. Differential outcome effect in the horse. J. Exp. Anal. Behav. 74, 245–253 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Missaire, M. et al. Long-term effects of interference on short-term memory performance in the rat. PLoS ONE 12, 1–18 (2017).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Bublitz, A., Weinhold, S. R., Strobel, S., Dehnhardt, G. & Hanke, F. D. Reconsideration of serial visual reversal learning in octopus (Octopus vulgaris) from a methodological perspective. Front. Physiol. 8, 1–11 (2017).

    Article 

    Google Scholar 

  • 29.

    Chittka, L. Sensorimotor learning in bumblebees: Long-term retention and reversal training. J. Exp. Biol. 201, 515–524 (1998).

    Article 

    Google Scholar 

  • 30.

    Chrobak, J. J., Hinman, J. R. & Sabolek, H. R. Revealing past memories: Proactive interference and ketamine-induced memory deficits. J. Neurosci. 28, 4512–4520 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Malleret, G. et al. Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J. Neurosci. 30, 3813–3825 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Joseph, M. A. et al. Differential involvement of the dentate gyrus in adaptive forgetting in the rat. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • 33.

    Shiflett, M. W., Rankin, A. Z., Tomaszycki, M. L. & DeVoogd, T. J. Cannabinoid inhibition improves memory in food-storing birds, but with a cost. Proc. R. Soc. B. 271, 2043–2048 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Meck, W. H. & Williams, C. L. Choline supplementation during prenatal development reduces proactive interference in spatial memory. Dev. Brain Res. 118, 51–59 (1999).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Clayton, N. S. & Krebs, J. R. One-trial associative memory: Comparison of food-storing and nonstoring species of birds. Anim. Learn. Behav. 22, 366–372 (1994).

    Article 

    Google Scholar 

  • 36.

    McGregor, A. & Healy, S. D. Spatial accuracy in food-storing and nonstoring birds. Anim. Behav. 58, 727–734 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Healy, S. D. Memory for objects and positions: Delayed non-matching-to-sample in storing and non-storing tits. Q. J. Exp. Psychol. Sect. B 48, 179–191 (1995).

    Google Scholar 

  • 38.

    Healy, S. D. & Krebs, J. R. Delayed-matching-to-sample by marsh tits and great tits. Q. J. Exp. Psychol. B 45, 33–47 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hampton, R. R., Shettleworth, S. J. & Westwood, R. P. Proactive interference, recency, and associative strength: Comparisons of black-capped chickadees and dark-eyed juncos. Anim. Learn. Behav. 26, 475–485 (1998).

    Article 

    Google Scholar 

  • 40.

    Tello-Ramos, M. C. et al. Memory in wild mountain chickadees from different elevations: Comparing first-year birds with older survivors. Anim. Behav. 137, 149–160 (2018).

    Article 

    Google Scholar 

  • 41.

    Croston, R. et al. Predictably harsh environment is associated with reduced cognitive flexibility in wild food-caching mountain chickadees. Anim. Behav. 123, 139–149 (2017).

    Article 

    Google Scholar 

  • 42.

    Careau, V. & Wilson, R. S. Of uberfleas and krakens: Detecting trade-offs using mixed models. Integr. Comp. Biol. 57, 362–371 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Niemelä, P. T. & Dingemanse, N. J. On the usage of single measurements in behavioural ecology research on individual differences. Anim. Behav. 145, 99–105 (2018).

    Article 

    Google Scholar 

  • 44.

    Gosler, A. G. The Great Tit (Hamlyn, 1993).

    Google Scholar 

  • 45.

    Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. 7, 1–15 (2019).

    Article 

    Google Scholar 

  • 46.

    Bründl, A. C. et al. Experimentally induced increases in fecundity lead to greater nestling care in blue tits. Proc. R. Soc. B. 286, 20191013 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Thompson, M. J. & Morand-Ferron, J. Food caching in city birds: Urbanization and exploration do not predict spatial memory in scatter hoarders. Anim. Cogn. 22, 743–756 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Roth, T. C. II., LaDage, L. D., Freas, C. A. & Pravosudov, V. V. Variation in memory and the hippocampus across populations from different climates: A common garden approach. Proc. R. Soc. B 279, 402–410 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Griffin, A. S., Guillette, L. M. & Healy, S. D. Cognition and personality: An analysis of an emerging field. Trends Ecol. Evol. 30, 207–214 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Ashton, B. J., Thornton, A. & Ridley, A. R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B. 373, 20170288 (2018).

    Article 

    Google Scholar 

  • 51.

    Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459 (2015).

    Article 

    Google Scholar 

  • 52.

    Bründl, A. C. et al. Elevational gradients as a model for understanding associations among temperature, breeding phenology and success. Front. Ecol. Evol. 8, 56377 (2020).

    Article 

    Google Scholar 

  • 53.

    Freas, C. A., LaDage, L. D., Roth, T. C. II. & Pravosudov, V. V. Elevation-related differences in memory and the hippocampus in mountain chickadees, Poecile gambeli. Anim. Behav. 84, 121–127 (2012).

    Article 

    Google Scholar 

  • 54.

    Pravosudov, V. V. & Roth, T. C. II. Cognitive ecology of food hoarding: The evolution of spatial memory and the hippocampus. Annu. Rev. Ecol. Evol. Syst. 44, 173–193 (2013).

    Article 

    Google Scholar 

  • 55.

    Croston, R. et al. Potential mechanisms driving population variation in spatial memory and the hippocampus in food-caching chickadees. Integr. Comp. Biol. 55, 354–371 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Kozlovsky, D. Y., Weissgerber, E. A. & Pravosudov, V. V. What makes specialized food-caching mountain chickadees successful city slickers?. Proc. R. Soc. B 284, 20162613 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: An updated perspective. Neuroscience 345, 12–26 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Cauchoix, M. et al. The repeatability of cognitive performance: A meta-analysis. Neuroscience 373, 20170281 (2018).

    Google Scholar 

  • 59.

    Croston, R. et al. Individual variation in spatial memory performance in wild mountain chickadees from different elevations. Anim. Behav. 111, 225–234 (2016).

    Article 

    Google Scholar 

  • 60.

    Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).

    Google Scholar 

  • 61.

    Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 

  • 62.

    Tillé, Y., Newman, J. A. & Healy, S. D. New tests for departures from random behavior in spatial memory experiments. Anim. Learn. Behav. 24, 327–340 (1996).

    Article 

    Google Scholar 

  • 63.

    Bates, D. et al. Linear Mixed-Effects using ‘Eigen’ and S4 1–113 (Springer, 2016).

    Google Scholar 

  • 64.

    Kuznetsova, A. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 65.

    R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 66.

    Warton, D. I., Lyons, M., Stoklosa, J. & Ives, A. R. Three points to consider when choosing a LM or GLM test for count data. Methods Ecol. Evol. 7, 882–890 (2016).

    Article 

    Google Scholar 

  • 67.

    Wilson, A. J. How should we interpret estimates of individual repeatability?. Evol. Lett. 2, 4–8 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article 

    Google Scholar 

  • 69.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • 70.

    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 8, 6–10 (2010).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history

    The expansion of Acheulean hominins into the Nefud Desert of Arabia