in

Great tits who remember more accurately have difficulty forgetting, but variation is not driven by environmental harshness

  • 1.

    Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. The importance of heritability estimates for understanding the evolution of cognition: A response to comments on Croston et al. Behav. Ecol. 26, 1463–1464 (2015).

    Article 

    Google Scholar 

  • 2.

    Langley, E. J. G. et al. Heritability and correlations among learning and inhibitory control traits. Behav. Ecol. 1, 1–9 (2020).

    Google Scholar 

  • 3.

    Boogert, N. J., Madden, J. R., Morand-Ferron, J. & Thornton, A. Measuring and understanding individual differences in cognition. Philos. Trans. R. Soc. B. 373, 2017080 (2018).

    Google Scholar 

  • 4.

    Sonnenberg, B. R., Branch, C. L., Pitera, A. M., Bridge, E. & Pravosudov, V. V. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 29, 1–7 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Benedict, L. M. et al. Elevation-related differences in annual survival of adult food-caching mountain chickadees are consistent with natural selection on spatial cognition. Behav. Ecol. Sociobiol. 74, 2817 (2020).

    Article 

    Google Scholar 

  • 6.

    Shaw, R. C., MacKinlay, R. D., Clayton, N. S. & Burns, K. C. Memory performance influences male reproductive success in a wild bird. Curr. Biol. 29, 1498–1502 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Cauchoix, M. & Chaine, A. S. How can we study the evolution of animal minds?. Front. Psychol. 7, 1–18 (2016).

    Article 

    Google Scholar 

  • 8.

    Janmaat, K. R. L. et al. Spatio-temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit. Am. J. Primatol. 78, 626–645 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Hampton, R. R. & Shettleworth, S. J. Hippocampus and memory in a food-storing and in a nonstoring bird species. Behav. Neurosci. 110, 946–964 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    LaDage, L. D., Roth, T. C., Cerjanic, A. M., Sinervo, B. & Pravosudov, V. V. Spatial memory: Are lizards really deficient?. Biol. Lett. 8, 939–941 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Milton, K. Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. Am. Anthropol. 83, 534–548 (1981).

    Article 

    Google Scholar 

  • 13.

    Thornton, A. & Boogert, N. J. Animal cognition: The benefits of remembering. Curr. Biol. 29, R324–R327 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Pravosudov, V. V. & Clayton, N. S. A test of the adaptive specialization hypothesis: Population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav. Neurosci. 116, 515–522 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Morand-Ferron, J., Hermer, E., Jones, T. B. & Thompson, M. J. Environmental variability, the value of information, and learning in winter residents. Anim. Behav. 147, 137–145 (2019).

    Article 

    Google Scholar 

  • 16.

    Hermer, E., Cauchoix, M., Chaine, A. S. & Morand-Ferron, J. Elevation-related difference in serial reversal learning ability in a nonscatter hoarding passerine. Behav. Ecol. 29, 840–847 (2018).

    Article 

    Google Scholar 

  • 17.

    Boyle, A. W., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).

    Article 

    Google Scholar 

  • 18.

    Roth, T. C. II. & Pravosudov, V. V. Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: A large-scale comparison. Proc. R. Soc. B 276, 401–405 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Roth, T. C. II., LaDage, L. D. & Pravosudov, V. V. Learning capabilities enhanced in harsh environments: A common garden approach. Proc. R. Soc. B 277, 3187–3193 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Tello-Ramos, M. C., Branch, C. L., Kozlovsky, D. Y., Pitera, A. M. & Pravosudov, V. V. Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the question. Anim. Behav. 1, 1–8 (2018).

    Google Scholar 

  • 22.

    Gonzalez, R. C., Behrend, E. R. & Bitterman, M. E. Reversal learning and forgetting in bird and fish. Science 158, 519–521 (1967).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 23.

    Strang, C. G. & Sherry, D. F. Serial reversal learning in bumblebees (Bombus impatiens). Anim. Cogn. 17, 723–734 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Herszage, J. & Censor, N. Modulation of learning and memory: A shared framework for interference and generalization. Neuroscience 392, 270–280 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Squier, L. H. Reversal learning improvement in the fish Astronotus ocellatus (Oscar). Psychon. Sci. 14, 143–144 (1969).

    Article 

    Google Scholar 

  • 26.

    Miyashita, Y., Nakajima, S. & Imada, H. Differential outcome effect in the horse. J. Exp. Anal. Behav. 74, 245–253 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Missaire, M. et al. Long-term effects of interference on short-term memory performance in the rat. PLoS ONE 12, 1–18 (2017).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Bublitz, A., Weinhold, S. R., Strobel, S., Dehnhardt, G. & Hanke, F. D. Reconsideration of serial visual reversal learning in octopus (Octopus vulgaris) from a methodological perspective. Front. Physiol. 8, 1–11 (2017).

    Article 

    Google Scholar 

  • 29.

    Chittka, L. Sensorimotor learning in bumblebees: Long-term retention and reversal training. J. Exp. Biol. 201, 515–524 (1998).

    Article 

    Google Scholar 

  • 30.

    Chrobak, J. J., Hinman, J. R. & Sabolek, H. R. Revealing past memories: Proactive interference and ketamine-induced memory deficits. J. Neurosci. 28, 4512–4520 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Malleret, G. et al. Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J. Neurosci. 30, 3813–3825 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Joseph, M. A. et al. Differential involvement of the dentate gyrus in adaptive forgetting in the rat. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • 33.

    Shiflett, M. W., Rankin, A. Z., Tomaszycki, M. L. & DeVoogd, T. J. Cannabinoid inhibition improves memory in food-storing birds, but with a cost. Proc. R. Soc. B. 271, 2043–2048 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Meck, W. H. & Williams, C. L. Choline supplementation during prenatal development reduces proactive interference in spatial memory. Dev. Brain Res. 118, 51–59 (1999).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Clayton, N. S. & Krebs, J. R. One-trial associative memory: Comparison of food-storing and nonstoring species of birds. Anim. Learn. Behav. 22, 366–372 (1994).

    Article 

    Google Scholar 

  • 36.

    McGregor, A. & Healy, S. D. Spatial accuracy in food-storing and nonstoring birds. Anim. Behav. 58, 727–734 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Healy, S. D. Memory for objects and positions: Delayed non-matching-to-sample in storing and non-storing tits. Q. J. Exp. Psychol. Sect. B 48, 179–191 (1995).

    Google Scholar 

  • 38.

    Healy, S. D. & Krebs, J. R. Delayed-matching-to-sample by marsh tits and great tits. Q. J. Exp. Psychol. B 45, 33–47 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hampton, R. R., Shettleworth, S. J. & Westwood, R. P. Proactive interference, recency, and associative strength: Comparisons of black-capped chickadees and dark-eyed juncos. Anim. Learn. Behav. 26, 475–485 (1998).

    Article 

    Google Scholar 

  • 40.

    Tello-Ramos, M. C. et al. Memory in wild mountain chickadees from different elevations: Comparing first-year birds with older survivors. Anim. Behav. 137, 149–160 (2018).

    Article 

    Google Scholar 

  • 41.

    Croston, R. et al. Predictably harsh environment is associated with reduced cognitive flexibility in wild food-caching mountain chickadees. Anim. Behav. 123, 139–149 (2017).

    Article 

    Google Scholar 

  • 42.

    Careau, V. & Wilson, R. S. Of uberfleas and krakens: Detecting trade-offs using mixed models. Integr. Comp. Biol. 57, 362–371 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Niemelä, P. T. & Dingemanse, N. J. On the usage of single measurements in behavioural ecology research on individual differences. Anim. Behav. 145, 99–105 (2018).

    Article 

    Google Scholar 

  • 44.

    Gosler, A. G. The Great Tit (Hamlyn, 1993).

    Google Scholar 

  • 45.

    Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. 7, 1–15 (2019).

    Article 

    Google Scholar 

  • 46.

    Bründl, A. C. et al. Experimentally induced increases in fecundity lead to greater nestling care in blue tits. Proc. R. Soc. B. 286, 20191013 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Thompson, M. J. & Morand-Ferron, J. Food caching in city birds: Urbanization and exploration do not predict spatial memory in scatter hoarders. Anim. Cogn. 22, 743–756 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Roth, T. C. II., LaDage, L. D., Freas, C. A. & Pravosudov, V. V. Variation in memory and the hippocampus across populations from different climates: A common garden approach. Proc. R. Soc. B 279, 402–410 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Griffin, A. S., Guillette, L. M. & Healy, S. D. Cognition and personality: An analysis of an emerging field. Trends Ecol. Evol. 30, 207–214 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Ashton, B. J., Thornton, A. & Ridley, A. R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B. 373, 20170288 (2018).

    Article 

    Google Scholar 

  • 51.

    Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459 (2015).

    Article 

    Google Scholar 

  • 52.

    Bründl, A. C. et al. Elevational gradients as a model for understanding associations among temperature, breeding phenology and success. Front. Ecol. Evol. 8, 56377 (2020).

    Article 

    Google Scholar 

  • 53.

    Freas, C. A., LaDage, L. D., Roth, T. C. II. & Pravosudov, V. V. Elevation-related differences in memory and the hippocampus in mountain chickadees, Poecile gambeli. Anim. Behav. 84, 121–127 (2012).

    Article 

    Google Scholar 

  • 54.

    Pravosudov, V. V. & Roth, T. C. II. Cognitive ecology of food hoarding: The evolution of spatial memory and the hippocampus. Annu. Rev. Ecol. Evol. Syst. 44, 173–193 (2013).

    Article 

    Google Scholar 

  • 55.

    Croston, R. et al. Potential mechanisms driving population variation in spatial memory and the hippocampus in food-caching chickadees. Integr. Comp. Biol. 55, 354–371 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Kozlovsky, D. Y., Weissgerber, E. A. & Pravosudov, V. V. What makes specialized food-caching mountain chickadees successful city slickers?. Proc. R. Soc. B 284, 20162613 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: An updated perspective. Neuroscience 345, 12–26 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Cauchoix, M. et al. The repeatability of cognitive performance: A meta-analysis. Neuroscience 373, 20170281 (2018).

    Google Scholar 

  • 59.

    Croston, R. et al. Individual variation in spatial memory performance in wild mountain chickadees from different elevations. Anim. Behav. 111, 225–234 (2016).

    Article 

    Google Scholar 

  • 60.

    Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).

    Google Scholar 

  • 61.

    Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 

  • 62.

    Tillé, Y., Newman, J. A. & Healy, S. D. New tests for departures from random behavior in spatial memory experiments. Anim. Learn. Behav. 24, 327–340 (1996).

    Article 

    Google Scholar 

  • 63.

    Bates, D. et al. Linear Mixed-Effects using ‘Eigen’ and S4 1–113 (Springer, 2016).

    Google Scholar 

  • 64.

    Kuznetsova, A. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 65.

    R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 66.

    Warton, D. I., Lyons, M., Stoklosa, J. & Ives, A. R. Three points to consider when choosing a LM or GLM test for count data. Methods Ecol. Evol. 7, 882–890 (2016).

    Article 

    Google Scholar 

  • 67.

    Wilson, A. J. How should we interpret estimates of individual repeatability?. Evol. Lett. 2, 4–8 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article 

    Google Scholar 

  • 69.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • 70.

    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 8, 6–10 (2010).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Semiparametric model selection for identification of environmental covariates related to adult groundfish catches and weights

    3 Questions: Nadia Christidi on the arts and the future of water