Fitzsimmons, K. M., Gonzalez-Alanis, P. & Martinez-Garcia, R. Why tilapia is becoming the most important food fish on the planet? In Proceedings of the 9th International Symposium on tilapia in Aquaculture, Shanghai Ocean University, Shanghai, China, 22-24 April 2011 8–16 (2011).
FAO. The State of World Fisheries and Aquaculture. Meeting the sustainable development goals. Rome. Licence. CC BY-NC-SA 3.0 IGO (Food and Agriculture Organisation, 2018).
ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 90 (Asian Development Bank, 2004).
Macaranas, J. M., Taniguchi, N., Pante, M. J. R., Capili, J. B. & Pullin, R. S. V. Electrophoretic evidence for extensive hybrid gene introgression into commercial Oreochromis niloticus (L.) stocks in the Philippines. Aquac. Res. 17, 249–258 (1986).
Google Scholar
ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 137 (Asian Development Bank, 2005).
Bradbeer, S. J. et al. Limited hybridization between introduced and critically endangered indigenous tilapia fishes in Northern Tanzania. University of Bristol. Hydrobiologia https://doi.org/10.1007/s10750-018-3572-5b (2018).
Google Scholar
Shechonge, A. et al. Losing cichlid fish biodiversity: Genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv. Genet. 19(5), 1199–1209 (2018).
Gupta, M. V & Acosta, B. O. A review of global tilapia farming practices. Aquac. Asia 9, 7–12 (2004).
Eknath, A., Dey, M. M., Rye, M. & Gjerde, B. Selective breeding of Nile tilapia for Asia. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, University of New England. 27, 89–96 (1998).
Ponzoni, R. W. et al. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev. Aquac. 3, 27–41 (2011).
Google Scholar
WorldFish. Genetically Improved Farmed Tilapia (GIFT). Key facts ongoing and future research. FactSheet. https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/66/3880_2015-31.pdf?sequence=1&isAllowed=y (2015).
Bolivar, R. Estimation of response to within-family selection for growth in Nile tilapia (Oreochromis niloticus). PhD. Dissertation, Dalhousie University, Halifax, N.S. Canada. 166 (1998).
Tayamen, M. M. Nationwide dissemination of GET-EXCEL tilapia in the Philippines. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R,B., Mair, G.C and Fitzsimmons, K.) 74–85 (2004).
Zimmerman, S. & Natividad, J. M. Comparative pond performance evaluation of GenoMar Supreme Tilapia GST 1 and GST 3 groups. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R.B., Mair, G.C and Fitzsimmons, K.) 89 (2004).
Thodesen, J. et al. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth, survival and external color traits of red tilapia (Oreochromis spp.) after four generations of multi-trait selection. Aquaculture 416–417, 354–366 (2013).
Google Scholar
Ansah, Y. B., Frimpong, E. A. & Hallerman, E. M. Genetically-improved tilapia strains in Africa: Potential benefits and negative impacts. Sustain. 6, 3697–3721 (2014).
Google Scholar
Charo-karisa, H. Selection for growth of Nile tilapia (Oreochromis niloticus L.) in low-input environments. PhD Thesis, Wageningen University, The Netherlands (2006).
Kohinoor, A. H. M., Modak, P. C. & Hussain, M. G. Growth and production performance of red tilapia and Nile tilapia (Oreochromis niloticus L.) under low-input culture system. Bangladesh J. Fish Res. 3, 11–17 (1999).
Vadhel, N. et al. Red Tilapia: A candidate euryhaline species for aqua farming in Gujarat. J. Fish. 11(1), 048–050 (2017).
Felix, E., Avwemoya, F. E. & Abah, A. Some methods of monosex tilapia production: A review. Int. j. fish. aquat. res. 4(2), 42–49 (2019).
Fuentes-silva, C., Soto-zarazúa, G. M., Torres-pacheco, I. & Flores-rangel, A. Male tilapia production techniques: A mini-review. Afr. J. Biotechnol. 12, 5496–5502 (2013).
Wohlfarth, G. W. The unexploited potential of tilapia hybrids in aquaculture. Aquacult Fish Manage, 25, 781–788 (1994).
Lahav, M. & Lahav, E. The development of all-male tilapia hybrids in Nir David. Bamidgeh. Isr. J. Aquac. 42, 58–61 (1990).
Siddiqui, A. Q. & Al-harbi, A. H. Evaluation of three species of tilapia, red tilapia and a hybrid tilapia as culture species in Saudi Arabia. Aquaculture 8486, 145–157 (1995).
Google Scholar
Gjerde, B. et al. Growth and survival in two complete diallele crosses with five stocks of Rohu carp (Labeo rohita). Aquaculture 209, 103–115 (2002).
Google Scholar
Mbiru, M. et al. Comparative performance of mixed-sex and hormonal sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquac. Int. 24, 557–566 (2015).
Google Scholar
Marengoni, N. G. et al. Morphological traits and growth performance of monosex male tilapia GIFT strain and Saint Peter®. Semin. Agrar. 36, 3399–3410 (2015).
Google Scholar
Eknath, A. E. & Acosta, B. O. Genetic improvement of farmed tilapias (GIFT) project: Final report, March to December 1997. International Center for Living Aquatic Resources Management (ICLARM), Makati City, Philippines 75 (1988).
Dan, N. C. & Little, D. C. The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam. Aquaculture 184, 221–231. https://doi.org/10.1016/S0044-8486(99)00329-4 (2000).
Google Scholar
Kohinoor, A. H. M., Rahman, M. & Islam, S. Upgradation of genetically improved farmed tilapia (GIFT) strain by family selection in Bangladesh. Int. J. Fish. Aquat. Stud. 4, 650–654 (2016).
Ridha, M. Preliminary study on growth, feed conversion and production in non-improved and improved strains of the Nile tilapia Oreochromis niloticus. Fisheries and Marine Environment Department, Kuwait Institute for scientific Research, Salmiyah 22017, Kuwait (2016).
Santos, B., Mareco, E. & Silva, M. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Sci. Anim. Sci. 35, 235–242 (2013).
Eknath, A. E. et al. Genetic improvement of farmed tilapias: Composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture 273, 1–14 (2007).
Google Scholar
Sukmanomon, S. et al. Genetic changes, intra- and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture 324–325, 44–54 (2012).
Google Scholar
Anane-taabeah, G., Frimpong, E. A. & Hallerman, E. Aquaculture-mediated invasion of the Genetically Improved Farmed Tilapia (GIFT) into the Lower Volta Basin of Ghana. Diversity (Basel) 11, 188 (2019).
Google Scholar
Trinh, T. Q., Agyakwah, S. K., Khaw, H. L., Benzie, J. A. H. & Attipoe, F. K. Y. Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530, 735938 (2021).
Google Scholar
Canonico, G., Oceanic, N. & Arthington, A. H. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483 (2005).
Google Scholar
Lind, C. E., Brummett, R. E. & Ponzoni, R. W. Exploitation and conservation of fish genetic resources in Africa: Issues and priorities for aquaculture development and research. Rev. Aquac. 4, 125–141 (2012).
Google Scholar
URT. Ministry Livestock and Fisheries.Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2019).
URT. Ministry of Livestock and Fisheries. Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2018).
Mbiru, M. et al. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Int. Aquac. https://doi.org/10.1007/s10499-019-00472-5 (2019).
Google Scholar
Kajungiro, R. A. et al. Population structure and genetic diversity of Nile Tilapia (Oreochromis niloticus) strains cultured in Tanzania. Front. Genet. 10, 1–12. https://doi.org/10.3389/fgene.2019.01269 (2019).
Google Scholar
Rothuis, A. et al. Aquaculture in East Africa: A regional approach. Wageningen, LEI Wageningen UR (University & Research Centre), LEI Report. IMARES C153/14| LEI. 14–120 (2014).
URT. Vice President’s Office, Division of Environment: National Adaptation Programme of Action(NAPA, 2007).
ATLAS. Climate change in Tanzania: Country risk profile. Task Order No. AID-OAA-I-14-00013 1–5 (Climate Change Adaptation, Thought Leadership and Assessments, 2018).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plot. 2019. https://rdrr.io/cran/ggpubr 2020/03/24 (2019).
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
Google Scholar
Evans, J. Straightforward Statistics for the Behavioral Sciences (Brooks/Cole Publishing, 1996).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Routledge, 1988).
Google Scholar
Fox, J. & Weisberg, S. car: Companion to Applied Regression. Third Edition, Sage. Version 3.0–7 (2019).
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R Package version 3.5.3. http://CRAN.R-project.org/package=emmeans, https://doi.org/10.1080/00031305.1980.10483031. (2020).
Dey, M. M. et al. Performance and nature of genetically improved farmed tilapia: A bioeconomic analysis. Aquac. Econ. Manag. 4, 1–2 (2000).
Google Scholar
Sifa, L., Chenhong, L. & Dey, M. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture 213, 123–129 (2002).
Google Scholar
Cnaani, A., Gall, G. A. E. & Hulata, G. Cold tolerance of tilapia species and hybrids. Aquac. Int. 8, 289–298 (2000).
Google Scholar
Nandlal, S., Morris, C. W., Lagibalavu, M. & Ledua, E. A comparative evaluation of two tilapia strains in Fiji, 35–41. In Proceeding of the Fish Genetics Research in Member Countries and Institutions of the International Network on Genetics in Aquaculture. ICLARM Conf. Proc, 2-5 March 1999, Kuala Lumpur, Malaysia (eds. Gupta, M. V. & Acosta, B. O.) 64, (179), 35–42 (2001).
Hussain, M. G. et al. Genetic evaluation of GIFT and existing strains of nile tilapia, Oreochromis niloticus L., under on-station and on-farm conditions in Bangladesh. Asian Fish. Sci. 13, 117–126 (2000).
Hopkins, K. Reporting fish growth: A review of the basics. J. World Aquac. Soc. 33, 173–179 (1992).
Google Scholar
Bhujel, R. C. On-farm feed management practices for Nile tilapia in Thailand. In On-Farm Feeding and Feed Management in Aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome. (ed. Hasan, M. R. & New, M. B.) 159–189 (2013).
Volpato, G. & Fernandes, M. Social control of growth in fish. Braz. J. Med. Biol. Res. 27, 797–810 (1994).
Enquist, M. & Jakobsson, S. Decision making and assessment in the fighting behaviour of Nannacara anomala (Cichlidae, Pisces). Ethology 72, 143–153 (1986).
Google Scholar
Boscolo, C. N. P., Morais, R. N. & Freitas, E. G. Same-sized fish groups increase aggressive interaction of sex-reversed males Nile tilapia GIFT strain. Appl. Anim. Behav. Sci. 135, 154–159 (2011).
Google Scholar
Ebtehag Kamel, A. R. Evaluation of reproductive performance of tilapia strains and some of their crosses. J. Arab. Aquac. Soc. 6, 119–138 (2011).
Thoa, N. P., Ninh, N. H., Hoa, N. T., Knibb, W. & Diep, N. H. Additive genetic and heterotic effects in a 4 × 4 complete diallel cross-population of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) reared in different water temperature environments in different water temperature environments in Northern Viet. Aquac. Res. 47, 708–720 (2016).
Google Scholar
Ridha, M. T. Comparative study of growth performance of three strains of Nile tilapia, Oreochromis niloticus, L., at two stocking densities. Aquac. Res. 37, 172–179 (2006).
Google Scholar
Khan, S., Hossain, M. & Science, P. Production and economics of GIFT strain of tilapia (Oreochromis niloticus) in small seasonal ponds. Progress. Agric. 19(1), 97–104 (2008).
Google Scholar
Alam, M. B., Islam, M. A., Marine, S. S., Rashid, A. & Hossain, M. A. Growth performances of GIFT tilapia (Oreochromis niloticus) in Cage culture at the Old Brahmaputra river using different densities. J. SylhetAgril. Univ. 1(2), 265–271 (2014).
Matthew, M. T. et al. Growth performance evaluation of four wild strains and one current farmed strain of Nile tilapia in Uganda. Int. J. Fish. Aquat. Stud. 4, 594–598 (2016).
Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F. & Mgaya, Y. D. Effect of stocking density on growth, production and economic benefits of mixed sex Nile tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarias gariepinus) in polyculture and monoculture. Aquac. Res. https://doi.org/10.1111/are.12463 (2014).
Google Scholar
Hasan, S. J., Mian, S., Rashid, A. H. & Rahmatullah, S. M. Effects of stocking density on growth and production of GIFT Tilapia (Oreochromis niloticus). Bangladesh. Fish. Res. 14, 45–53 (2010).
Rahman, M. M., Mondal, D. K., Amin, M. R. & Muktadir, M. G. Impact of stocking density on growth and production performance of monosex tilapia (Oreochromis niloticus) in ponds. Asian J. Med. Biol. Res. 2, 471–476 (2016).
Google Scholar
Li, S. et al. Improving growth performance and caudal fin stripe pattern in selected F6–F8 generations of GIFT Nile tilapia (Oreochromis niloticus L.) using mass selection. Aquac. Res. 37, 1165–1171 (2006).
Google Scholar
Dos Santos, B., Vander Silva, V. V., De, M. V., Mareco, E. A. & Salomão, R. A. S. Performance of Nile tilapia Oreochromis niloticus strains in Brazil: A comparison with Philippine strain. J. Appl. Anim. Res. 47, 72–78 (2019).
Google Scholar
Reis Neto, V. et al. Genetic parameters and trends of morphometric traits of GIFT tilapia under selection for weight gain. Sci. Agric. 71, 259–265 (2014).
Google Scholar
Gilbert, H. R. & Gregory, P. W. Some features of growth and development of Hereford cattle. J. Anim. Sci. 11, 3–16 (1952).
Google Scholar
Russell, W. S. T. The growth of Ayrshire cattle: An analysis of linear body measurements. J. Anim. Sci. 21, 217–226 (1975).
Google Scholar
Montoya-lópez, A., Moreno-arias, C., Tarazona-morales, A., Olivera-Angel, M. & Betancur, J. Body shape variation between farms of tilapia (Oreochromis sp.) in Colombian Andes using landmark based geometric morphometrics. Lat. Am. J. Aquat. Res. 47, 194–200 (2019).
Google Scholar
Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130(4), 411–423 (2001).
Google Scholar
Azevedo, R. V. et al. Responses of Nile tilapia to different levels of water salinity Rafael. Lat. Am. J. Aquat. Res. 43, 828–835 (2015).
Nguyen, H. N., Khaw, L. H., Ponzoni, R. W., Hamzah, A. & Kamaruzzaman, N. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means?. Aquaculture 272S1, S38–S46 (2007).
Google Scholar
Imre, I., McLaughlin, R. L. & Noakes, D. L. G. Phenotypic plasticity in brook charr: Changes in caudal fin induced by water flow. J. Fish Biol. 61, 1171–1181 (2002).
Google Scholar
Costa, C. et al. Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 101, 427–436 (2010).
Google Scholar
Vehanen, T. & Huusko, A. Brown trout Salmo trutta express different morphometrics due to divergence in the rearing environment. J. Fish Biol. 79, 1167–1181 (2011).
Google Scholar
Ndiwa, T. C., Nyingi, D. W., Claude, J. & Agnèse, J.-F. Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus) living in extreme environmental conditions in the Kenyan Rift-Valley. Environ. Biol. Fishes. https://doi.org/10.1007/s10641-016-0492-y (2016).
Google Scholar
Khaw, L. H., Ponzoni, R. W., Hamzah, A., Abu-bakar, K. R. & Bijma, P. Genotype by production environment interaction in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 326–329, 53–60 (2012).
Google Scholar
Kosai, P., Sathavorasmith, P., Jiraungkoorskul, K. & Jiraungkoorskul, W. Morphometric characters of Nile Tilapia
(Oreochromis niloticus) in Thailand. Walailak Jour. Sci. and Tech. 11(10), 857–863 (2014).
Source: Ecology - nature.com