in

Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird

  • 1.

    Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B Biol. Sci. 280, 20130016 (2013).

    Google Scholar 

  • 2.

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).

    Google Scholar 

  • 3.

    Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).

    Google Scholar 

  • 4.

    Dawson, A., King, V. M., Bentley, G. E. & Ball, G. F. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Wingfield, J. C. & Kenagy, G. J. Natural regulation of reproductive cycles. Vertebr. Endocrinol. Fundam. Biomed. Implic. 4, 181–241 (1991).

    Google Scholar 

  • 6.

    Hahn, T. P., Pereyra, M. E., Sharbaugh, S. M. & Bentley, G. E. Physiological responses to photoperiod in three cardueline finch species. Gen. Comp. Endocrinol. 137, 99–108 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Perfito, N., Meddle, S. L., Tramontin, A. D., Sharp, P. J. & Wingfield, J. C. Seasonal gonadal recrudescence in song sparrows: Response to temperature cues. Gen. Comp. Endocrinol. 143, 121–128 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B Biol. Sci. 286, 20190952 (2019).

    Google Scholar 

  • 9.

    Drake, A. & Martin, K. Rainfall and nest site competition delay mountain bluebird and tree swallow breeding but do not impact productivity. Auk 137, 1–18 (2020).

    Google Scholar 

  • 10.

    Bison, M. et al. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol. Evolut. https://doi.org/10.1002/ece3.6684 (2020).

    Article 

    Google Scholar 

  • 11.

    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Moussus, J.-P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).

    Google Scholar 

  • 14.

    Chamberlain, D. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).

    Google Scholar 

  • 15.

    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).

    ADS 

    Google Scholar 

  • 16.

    Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113, G03013 (2008).

    ADS 

    Google Scholar 

  • 17.

    Kudo, G. & Hirao, A. S. Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: Implications for global-change impacts. Popul. Ecol. 48, 49–58 (2006).

    Google Scholar 

  • 18.

    Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Ceppi, P., Scherrer, S. C., Fischer, A. M. & Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 32, 203–213 (2012).

    Google Scholar 

  • 20.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

    ADS 

    Google Scholar 

  • 21.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. Atmos. 111, D11107 (2006).

    ADS 

    Google Scholar 

  • 23.

    Napoli, A., Crespi, A., Ragone, F., Maugeri, M. & Pasquero, C. Variability of orographic enhancement of precipitation in the Alpine region. Sci. Rep. 9, 13352 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Diffenbaugh, N. S., Scherer, M. & Ashfaq, M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Chang. 3, 379–384 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 25.

    Beniston, M., Keller, F. & Goyette, S. Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theoret. Appl. Climatol. 74, 19–31 (2003).

    ADS 

    Google Scholar 

  • 26.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 27.

    Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Tulp, I. & Schekkerman, H. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).

    Google Scholar 

  • 29.

    Leung, M.C.-Y. et al. Phenology of hatching and food in low Arctic passerines and shorebirds: Is there a mismatch?. Arctic Sci. 4, 538–556 (2018).

    Google Scholar 

  • 30.

    Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).

    Google Scholar 

  • 31.

    Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).

    Google Scholar 

  • 32.

    Hendricks, P. Spring snow conditions, laying date, and clutch size in an alpine population of American Pipits. J. Field Ornithol. 74, 423–429 (2003).

    Google Scholar 

  • 33.

    Pereyra, M. E. Effects of snow-related environmental variation on breeding schedules and productivity of a high-altitude population of dusky flycatchers (Empidonax oberholseri). Auk 128, 746–758 (2011).

    Google Scholar 

  • 34.

    Resano-Mayor, J. et al. Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers. Conserv. 28, 2669–2685 (2019).

    Google Scholar 

  • 35.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

    MATH 

    Google Scholar 

  • 36.

    Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    García-González, R., Aldezabal, A., Laskurain, N. A., Margalida, A. & Novoa, C. Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): Implications for reproductive success. PLoS ONE 11, e0148632 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Antor, R. J. Arthropod fallout on high alpine snow patches of the Central Pyrenees, northeastern Spain. Arct. Alp. Res. 26, 72–76 (1994).

    Google Scholar 

  • 39.

    Brambilla, M. et al. Foraging habitat selection by alpine white-winged snowfinches Montifringilla nivalis during the nestling rearing period. J. Ornithol. 158, 277–286 (2017).

    Google Scholar 

  • 40.

    Heiniger, P. H. Anpassungsstrategien des Schneefinken (Montifringilla nivalis) an die extremen Umweltbedingungen des Hochgebirges. Der Ornithol. Beobachter 88, 193–207 (1991).

    Google Scholar 

  • 41.

    MacDonald, E. C., Camfield, A. F., Jankowski, J. E. & Martin, K. An alpine-breeding songbird can adjust dawn incubation rhythms to annual thermal regimes. Auk 131, 495–506 (2014).

    Google Scholar 

  • 42.

    Mortensen, L. O., Schmidt, N. M., Høye, T. T., Damgaard, C. & Forchhammer, M. C. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic high-arctic ecosystem. Polar Biol. 39, 1467–1478 (2016).

    Google Scholar 

  • 43.

    Grangé, J. L. Biologie de la reproduction de la Niverolle alpine Montifringilla nivalis dans les Pyrénnées occidentales françaises. Nos Oiseaux 55, 67–82 (2008).

    Google Scholar 

  • 44.

    Strinella, E., Vianale, P., Pirrello, S. & Artese, C. Biologia riproduttiva del Fringuello Alpino Montifringilla nivalis a Campo Imperatore nel Parco Nazionale del Gran Sasso e Monti della Laga (AQ). Alula 18, 95–100 (2011).

    Google Scholar 

  • 45.

    Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 367–372 (2003).

    Google Scholar 

  • 46.

    Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein. (Schweizerische Vogelwarte, 2018).

  • 47.

    Basist, A., Bell, G. D. & Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 7, 1305–1315 (1994).

    ADS 

    Google Scholar 

  • 48.

    Hock, R. et al. High mountain areas. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H. O. et al.). 131–202. (IPCC-Intergovernmental Panel on Climate Change, 2019).

  • 49.

    Schmidt, N. M., Reneerkens, J., Christensen, J. H., Olesen, M. & Roslin, T. An ecosystem-wide reproductive failure with more snow in the Arctic. PLOS Biol. 17, e3000392 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Martin, K. & Wiebe, K. L. Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr. Comp. Biol. 44, 177–185 (2004).

    PubMed 

    Google Scholar 

  • 51.

    Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160250 (2017).

    Google Scholar 

  • 52.

    Barlow, K. E. et al. Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain. Biol. Cons. 182, 14–26 (2015).

    Google Scholar 

  • 53.

    Strebel, N., Kéry, M., Schaub, M. & Schmid, H. Studying phenology by flexible modelling of seasonal detectability peaks. Methods Ecol. Evol. 5, 483–490 (2014).

    Google Scholar 

  • 54.

    Maggini, R. et al. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecol. Model. 222, 21–32 (2011).

    Google Scholar 

  • 55.

    Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. N. Y. Acad. Sci. 1249, 166–190 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • 56.

    Gossmann, T. I. et al. Ice-age climate adaptations trap the alpine marmot in a state of low genetic diversity. Curr. Biol. 29, 1712–1720 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: Evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).

    PubMed 

    Google Scholar 

  • 58.

    Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim. Change 139, 637–649 (2016).

    Google Scholar 

  • 59.

    Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).

    Google Scholar 

  • 60.

    Strinella, E., Scridel, D., Brambilla, M., Schano, C. & Korner-Nievergelt, F. Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Sci. Rep. 10, 8386 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).

    ADS 

    Google Scholar 

  • 62.

    Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Chang. 10, 406–415 (2020).

    ADS 

    Google Scholar 

  • 63.

    Summers-Smith, J. Handbook of the Birds of the World, Volume 14: Bush-Shrikes to Old World Sparrows. (2009).

  • 64.

    Glutz von Blotzheim, U., Bauer, K. & Bezzel, E. I: Passeridae. in Handbuch der Vögel Mitteleuropas. Vol. 12 (Akademische Verlagsgesellschaft, 1997).

  • 65.

    Antor, R. J. The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J. Avian Biol. 26, 81–85 (1995).

    Google Scholar 

  • 66.

    Gonseth, Y., Wohlgemuth, T., Sansonnens, B. & Buttler, A. Die Biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien. Vol. 137 (2001).

  • 67.

    Thornton, P. E., Running, S. W. & White, M. A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190, 214–251 (1997).

    ADS 

    Google Scholar 

  • 68.

    Magnusson, J., Gustafsson, D., Hüsler, F. & Jonas, T. Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res. 50, 7816–7835 (2014).

    ADS 

    Google Scholar 

  • 69.

    Helbig, N., van Herwijnen, A., Magnusson, J. & Jonas, T. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci. 19, 1339–1351 (2015).

    ADS 

    Google Scholar 

  • 70.

    Begert, M. & Frei, C. Long-term area-mean temperature series for Switzerland—Combining homogenized station data and high resolution grid data. Int. J. Climatol. 38, 2792–2807 (2018).

    Google Scholar 

  • 71.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. ArXiv e-prints 1406 (2015).

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 73.

    Gelman, A. & Su, Y.-S. Arm: Data analysis using regression and multilevel/hierarchical models. (2020).

  • 74.

    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76 (2017).

  • 75.

    Stan Development Team. RStan: The R interface to Stan. (2020).

  • 76.

    Gabry, J. shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. (2018).

  • 77.

    Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691 (2004).

    ADS 

    Google Scholar 

  • 78.

    Pebesma, E. & Bivand, R. S. S classes and methods for spatial data: the sp package. R News 5, 9–13 (2005).

    Google Scholar 

  • 79.

    Gelman, A. & Greenland, S. Are confidence intervals better termed “uncertainty intervals”?. BMJ 366, I5381 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan