in

Heterogeneity in patterns of helminth infections across populations of mountain gorillas (Gorilla beringei beringei)

  • 1.

    Weber, A. W. & Vedder, A. Population dynamics of the Virunga gorillas: 1959–1978. Biol. Conserv. 26, 341–366 (1983).

    Article 

    Google Scholar 

  • 2.

    Granjon, A.-C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. 23, 455–465 (2020).

    Article 

    Google Scholar 

  • 3.

    Gray, M. et al. Virunga Massif Mountain Gorilla Census—2010 Summary Report (IGCP & Partners, 2010).

    Google Scholar 

  • 4.

    Gray, M. et al. Genetic census reveals increased but uneven growth of a critically endangered mountain gorilla population. Biol. Conserv. 158, 230–238 (2013).

    Article 

    Google Scholar 

  • 5.

    Robbins, M. M. et al. Extreme conservation leads to recovery of the Virunga mountain gorillas. PLoS One 6, e19788 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Hickey, J. R., Granjon, A.-C. & Vigilant, L. Virunga 2015–2016 Surveys: Monitoring Mountain Gorillas, Other Select Mammals, and Illegal Activities (IGCP & Partners, 2019).

    Google Scholar 

  • 7.

    Kalpers, J. et al. Gorillas in the crossfire: Population dynamics of the Virunga mountain gorillas over the past three decades. Oryx 37, 326–337 (2003).

    Article 

    Google Scholar 

  • 8.

    Robbins, M. M., Gray, M., Kagoda, E. & Robbins, A. M. Population dynamics of the Bwindi mountain gorillas. Biol. Conserv. 142, 2886–2895 (2009).

    Article 

    Google Scholar 

  • 9.

    Hickey, J. R., Uzabaho, E. & Akantorana, M. Bwindi-Sarambwe EM 2018 Surveys: Monitoring Mountain Gorillas, Other Select Mammals, and Human Activities 40 (GVTC, IGCP & Partners, 2019).

    Google Scholar 

  • 10.

    Roy, J. et al. Challenges in the use of genetic mark-recapture to estimate the population size of Bwindi mountain gorillas (Gorilla beringei beringei). Biol. Conserv. 180, 249–261 (2014).

    Article 

    Google Scholar 

  • 11.

    McNeilage, A. J. Mountain Gorillas in the Virunga Volcanoes: Ecology and Carrying Capacity (University of Bristol, 1995).

    Google Scholar 

  • 12.

    Caillaud, D., Ndagijimana, F., Giarrusso, A. J., Vecellio, V. & Stoinski, T. S. Mountain gorilla ranging patterns: Influence of group size and group dynamics. Am. J. Primatol. 76, 730–746 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. 6, eaba0724 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Watts, D. P. Causes and consequences of variation in male mountain gorilla life histories and group membership. In Primate Males (ed. Kappeler, P. M.) 169–179 (Cambridge University Press, 2000).

    Google Scholar 

  • 15.

    Robbins, M. M., Robbins, A. M., Gerald-Steklis, N. & Steklis, H. D. Socioecological influences on the reproductive success of female mountain gorillas (Gorilla beringei beringei). Behav. Ecol. Sociobiol. 61, 919–931 (2007).

    Article 

    Google Scholar 

  • 16.

    Robbins, A. M. et al. Impact of male Infanticide on the social structure of mountain gorillas. PLoS One 8, e78256 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Grueter, C. C. et al. Quadratic relationships between group size and foraging efficiency in a herbivorous primate. Sci. Rep. 8, 16718 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Eckardt, W., Stoinski, T. S., Rosenbaum, S. & Santymire, R. Social and ecological factors alter stress physiology of Virunga mountain gorillas (Gorilla beringei beringei). Ecol. Evol. 9, 5248–5259 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Harcourt, A. H., Parks, S. A. & Woodroffe, R. Human density as an influence on species/area relationships: Double jeopardy for small African reserves?. Biodivers. Conserv. 10, 1011–1026 (2001).

    Article 

    Google Scholar 

  • 20.

    Citterio, C. V. et al. Abomasal nematode community in an alpine chamois (Rupicapra r. rupicapra) population before and after a die-off. J. Parasitol. 92, 918–927 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Hudson, P. J. Macroparasites: Observed patterns. Ecol. Infect. Dis. Nat. Popul. 20, 144–176 (1995).

    Google Scholar 

  • 22.

    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B Biol. Sci. 269, 1625–1632 (2002).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Anderson, R. M. & May, R. M. Age-related changes in the rate of disease transmission: Implications for the design of vaccination programmes. Epidemiol. Infect. 94, 365–436 (1985).

    CAS 

    Google Scholar 

  • 24.

    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).

    Article 

    Google Scholar 

  • 26.

    Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. Lond. B Biol. Sci. 265, 1283–1289 (1998).

    Article 

    Google Scholar 

  • 27.

    Gillespie, T. R. & Chapman, C. A. Forest fragmentation, the decline of an endangered primate, and changes in host–parasite interactions relative to an unfragmented forest. Am. J. Primatol. 70, 222–230 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    dos Santos, C. N. et al. Seasonal dynamics of cyathostomin (Nematoda–Cyathostominae) infective larvae in Brachiaria humidicola grass in tropical southeast Brazil. Vet. Parasitol. 180, 274–278 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Silangwa, S. M. & Todd, A. C. Vertical migration of trichostrongylid larvae on grasses. J. Parasitol. 50, 278–285 (1964).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Callinan, A. P. L. & Westcott, J. M. Vertical distribution of trichostrongylid larvae on herbage and in soil. Int. J. Parasitol. 16, 241–244 (1986).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Crofton, H. D. The ecology of immature phases of trichostrongyle nematodes: II. The effect of climatic factors on the availability of the infective larvae of Trichostrongylus retortaeformis to the host. Parasitology 39, 26–38 (1948).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Zanet, S. et al. Higher risk of gastrointestinal parasite infection at lower elevation suggests possible constraints in the distributional niche of Alpine marmots. PLoS One 12, e0182477 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Derek Scasta, J. Livestock parasite management on high-elevation rangelands: Ecological interactions of climate, habitat, and wildlife. J. Integr. Pest Manag. 6, 20 (2015).

    Article 

    Google Scholar 

  • 35.

    Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M. & Yoshida, K. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates 38, 111–125 (1997).

    Article 

    Google Scholar 

  • 36.

    MacIntosh, A. J. J., Hernandez, A. D. & Huffman, M. A. Host age, sex, and reproductive seasonality affect nematode parasitism in wild Japanese macaques. Primates 51, 353–364 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Pafčo, B. et al. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas?. Parasitol. Res. 116, 3401–3410 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Rothman, J. M., Pell, A. N. & Bowman, D. D. Host-parasiteecology of the helminths in mountain gorillas. J. Parasitol. 94, 834–840 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Müller-Graf, C. D. M., Collins, D. A. & Woolhouse, M. E. J. Intestinal parasite burden in five troops of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology 112, 489–497 (1996).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Alexander, J. & Stimson, W. H. Sex hormones and the course of parasitic infection. Parasitol. Today 4, 189–193 (1988).

    Article 

    Google Scholar 

  • 41.

    Bundy, D. A. P. Gender-dependent patterns of infections and disease. Parasitol. Today 4, 186–189 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Zuk, M. Reproductive strategies and disease susceptibility: An evolutionary viewpoint. Parasitol. Today 6, 231–233 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Nunn, C. & Altizer, S. Infectious Diseases in Primates: Behavior (Ecology and Evolution. Oxford University Press, Oxford, 2006).

    Book 

    Google Scholar 

  • 44.

    Wilson, K. et al. Heterogeneities in macroparasite infections: Patterns and processes. In The Ecology of Wildlife Diseases 6–44 (2002).

  • 45.

    Cattadori, I. M., Boag, B., Bjørnstad, O. N., Cornell, S. J. & Hudson, P. J. Peak shift and epidemiology in a seasonal host–nematode system. Proc. R. Soc. B Biol. Sci. 272, 1163–1169 (2005).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Terio, K. A. et al. Oesophagostomiasis in non-human primates of Gombe National Park, Tanzania. Am. J. Primatol. 80, e22572 (2018).

    Article 

    Google Scholar 

  • 47.

    Gillespie, T. R., Nunn, C. L. & Leendertz, F. H. Integrative approaches to the study of primate infectious disease: Implications for biodiversity conservation and global health. Am. J. Phys. Anthropol. 137, 53–69 (2008).

    Article 

    Google Scholar 

  • 48.

    Collett, M. G. et al. Gastric Ollulanus tricuspis infection identified in captive cheetahs (Acinonyx jubatus) with chronic vomiting: Case report. J. S. Afr. Vet. Assoc. 71, 251–255 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Dennis, M. M., Bennett, N. & Ehrhart, E. J. Gastric adenocarcinoma and chronic gastritis in two related Persian cats. Vet. Pathol. 43, 358–362 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Smetana, H. F. & Orihel, T. C. Gastric papillomata in Macaca speciosa induced by Nochtia nochti (Nematoda: Trichostrongyloidea). J. Parasitol. 55, 349–351 (1969).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Nybelin, O. Anoplocephala gorillae n. sp. Ark Zool. 19, 1–3 (1924).

    Google Scholar 

  • 52.

    Sleeman, J. M., Meader, L. L., Mudakikwa, A. B., Foster, J. W. & Patton, S. Gastrointestinal parasites of mountain gorillas (Gorilla gorilla beringei) in the Parc National des Volcans, Rwanda. J. Zool. Wildl. Med. 31, 322–328 (2000).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Ashford, R. W., Lawson, H., Butynski, T. M. & Reid, G. D. F. Patterns of intestinal parasitism in the mountain gorilla Gorilla gorilla in the Bwindi-Impenetrable Forest, Uganda. J. Zool. 239, 507–514 (1996).

    Article 

    Google Scholar 

  • 54.

    Kalema-Zikusoka, G., Rothman, J. M. & Fox, M. T. Intestinal parasites and bacteria of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Primates 46, 59–63 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Owiunji, I, et al. The biodiversity of the Virunga Volcanoes. https://programs.wcs.org/portals/49/media/file/volcanoes_biodiv_survey.pdf (2005).

  • 56.

    Langdale-Brown, I., Osmaston, H. & Wilson, J. G. The Vegetation of Uganda and Its Bearing on Land-Use (Governmentt of Uganda, 1964).

    Google Scholar 

  • 57.

    Ashford, R. W., Reid, G. D. F. & Butynski, T. M. The intestinal faunas of man and mountain gorillas in a shared habitat. Ann. Trop. Med. Parasitol. 84, 337–340 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Shutt, K. et al. Effects of habituation, research and ecotourism on faecal glucocorticoid metabolites in wild western lowland gorillas: Implications for conservation management. Biol. Conserv. 172, 72–79 (2014).

    Article 

    Google Scholar 

  • 59.

    Kayiranga, A. et al. Analysis of climate and topography impacts on the spatial distribution of vegetation in the Virunga Volcanoes Massif of East-Central Africa. Geosciences 7, 17 (2017).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Cousins, D. & Huffman, M. A. Medicinal properties in the diet of gorillas: An ethno-phramacological evaluation. Afr. Stud. Monogr. 23, 65–89 (2002).

    Google Scholar 

  • 61.

    Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Hayes, K. S., Bancroft, A. J. & Grencis, R. K. Immune-mediated regulation of chronic intestinal nematode infection. Immunol. Rev. 201, 75–88 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Maizels, R. M. et al. Helminth parasites—masters of regulation. Immunol. Rev. 201, 89–116 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Proudman, C. J., Holmes, M. A., Sheoran, A. S., Edwards, S. E. R. & Trees, A. J. Immunoepidemiology of the equine tapeworm Anoplocephala perfoliata: Age-intensity profile and age-dependency of antibody subtype responses. Parasitology 114, 89–94 (1997).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Gergócs, V., Garamvölgyi, Á., Homoródi, R. & Hufnagel, L. Seasonal change of oribatid mite communities (Acari, Oribatida) in three different types of microhabitats in an oak forest. Appl. Ecol. Environ. Res. 9, 181–195 (2011).

    Article 

    Google Scholar 

  • 66.

    Dobson, A. & Foufopoulos, J. Emerging infectious pathogens of wildlife. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1001–1012 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    Article 

    Google Scholar 

  • 69.

    Pafčo, B. et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 8, 5933 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    McNeilage, A. Diet and habitat use of two mountain gorilla groups in contrasting habitats in the Virunga. In Mountain Gorillas: Three Decades of Research at Karisoke (Cambridge University Press, 2001).

    Google Scholar 

  • 71.

    Sinayitutse, E. et al. Daily defecation outputs of mountain gorillas (Gorilla beringei beringei) in the Volcanoes National Park, Rwanda. Primates https://doi.org/10.1007/s10329-020-00874-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Burgunder, J. et al. Complexity in behavioural organization and strongylid infection among wild chimpanzees. Anim. Behav. 129, 257–268 (2017).

    Article 

    Google Scholar 

  • 73.

    Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T. & Austad, K. M. Life on the edge: Gastrointestinal parasites from the forest edge and interior primate groups. Am. J. Primatol. 68, 397–409 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Anderson, R. M. & Schad, G. A. Hookworm burdens and faecal egg counts: An analysis of the biological basis of variation. Trans. R. Soc. Trop. Med. Hyg. 79, 812–825 (1985).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Warnick, L. D. Daily variability of equine fecal strongyle egg counts. Cornell Vet. 82, 453–463 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Tomczuk, K. et al. Comparison of the sensitivity of coprological methods in detecting Anoplocephala perfoliata invasions. Parasitol. Res. 113, 2401–2406 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Williamson, R., Beveridge, I. & Gasser, R. Coprological methods for the diagnosis of Anoplocephala perfoliata infection of the horse. Aust. Vet. J. 76, 618–621 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Cringoli, G. et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat. Protoc. 12, 1723–1732 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Guschanski, K. et al. Counting elusive animals: Comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol. Conserv. 142, 290–300 (2009).

    Article 

    Google Scholar 

  • 80.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 81.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 82.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • 83.

    Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 20 (2005).

    Article 

    Google Scholar 

  • 85.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).

    Google Scholar 

  • 86.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • 87.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 89.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East