Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).
Google Scholar
Ebbe, B. et al. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 139–160 (Blackwell Publishing Ltd, 2010).
Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).
Google Scholar
Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11, e0148016 (2016).
Google Scholar
del Campo, J. & Massana, R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162, 435–448 (2011).
Google Scholar
López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
Google Scholar
Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).
Google Scholar
Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).
Google Scholar
Jürgens, K. & Massana, R. In Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (Wiley, 2008).
Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).
Google Scholar
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
Google Scholar
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Google Scholar
Patterson, D. J., Nygaard, K., Steinberg, G. & Turley, C. M. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67 (1993).
Google Scholar
Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Google Scholar
Arndt, H. et al. In The Flagellates—Unity, Diversity and Evolution (eds. Leadbeater, B. S. & Green, J. C.) 240–268 (Taylor & Francis Ltd, 2000).
Boenigk, J. & Arndt, H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van. Leeuwenhoek 81, 465–480 (2002).
Google Scholar
Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795–797 (1982).
Google Scholar
Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).
Google Scholar
Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).
Google Scholar
Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).
Google Scholar
Stoeck, T., Taylor, G. T. & Epstein, S. S. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656–5663 (2003).
Google Scholar
Pachiadaki, M. G. et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 129, 223–231 (2016).
Google Scholar
Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog. Oceanogr. 178, 102175 (2019).
Google Scholar
Pawlowski, J. et al. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6, e18169 (2011).
Google Scholar
Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M. & Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl Acad. Sci. USA 107, 115–120 (2010).
Google Scholar
Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).
Google Scholar
Schlitzer, R. Ocean Data View (2012). http://odv.awi.de.
Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Part I: Oceanograp. Res. Pap. 128, 55–66 (2017).
Google Scholar
Živaljić, S. et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. (Ciliophora, Euplotia). Eur. J. Protistol. 73, 125664 (2020).
Google Scholar
Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).
Google Scholar
Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).
Google Scholar
Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016).
Schoenle, A., Hohlfeld, M., Hermanns, K. & Arndt, H. V9_DeepSea (Deep Sea Reference Database) [Data set]. Commun. Biol., Zenodo https://doi.org/10.5281/zenodo.4305675 (2021).
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–D604 (2013).
Google Scholar
Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).
Google Scholar
Clopton, R. E., Janovy, J. & Percival, T. J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334–337 (1992).
Google Scholar
Leander, B. S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24, 60–67 (2008).
Google Scholar
del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).
Google Scholar
Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
Google Scholar
Baker, P. et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 21–34 (2018).
Google Scholar
Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).
Google Scholar
Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
Google Scholar
Xu, D. et al. Pigmented microbial eukaryotes fuel the deep sea carbon pool in the tropical Western Pacific Ocean. Environ. Microbiol. 20, 3811–3824 (2018).
Google Scholar
Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).
Google Scholar
Schoenle, A. et al. Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 73, 125665 (2020).
Google Scholar
Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 15, 154–167 (2021).
Google Scholar
Živaljić, S. et al. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: literature review and own experiments. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 251–259 (2018).
Google Scholar
Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).
Google Scholar
Devey, C. W. et al. Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 7–20 (2018).
Google Scholar
Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).
Google Scholar
Gooday, A. J. In Encyclopedia of Ocean Science (eds. Cochran, J. et al.) 684–705 (Elsevier, 2019).
Vuillemin, A. et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 5, eaaw4108 (2019).
De Corte, D., Paredes, G., Yokokawa, T., Sintes, E. & Herndl, G. J. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro. Ecol. 78, 1–5 (2019).
Google Scholar
Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on Archaea. Appl. Environ. Microbiol. 83, e02317–16 (2017).
Google Scholar
Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).
Google Scholar
Schoenle, A. et al. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol. 69, 102–116 (2019).
Google Scholar
Danovaro, R. Methods for the Study of Deep-sea Sediments, their Functioning and Biodiversity (ed. Danovaro, R.) 181–196 (CRC Press, 2010).
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).
Google Scholar
Butler, H. & Rogerson, A. Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730 (1995).
Google Scholar
Goryatcheva, N. V. The cultivation of colourless marine flagellate Bodo marina. Biol. Inland Waters Bull. 11, 25–28 (1971).
Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
Google Scholar
Van der Auwera, G., Chapelle, S. & De Wächter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338, 133–136 (1994).
Google Scholar
Hillis, D. M., Dixon, M. T. & Ribosomal, D. N. A. Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Google Scholar
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).
Google Scholar
Mahé, F. Stampa: sequence taxonomic assigment by massive pairwise aligments. https://github.com/frederic-mahe/stampa (2018).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1T (2011).
Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. The R Project for Statistical Computing. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).
Hennig, C. fpc: Flexible Procedures for Clustering. The R Project for Statistical Computing. https://www.unibo.it/sitoweb/christian.hennig/en/ (2019).
Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. The R Project for Statistical Computing. https://rdrr.io/cran/VennDiagram/ (2018).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Google Scholar
Kolde, R. pheatmap: Pretty Heatmaps. The R Project for Statistical Computing. https://CRAN.R-project.org/package=pheatmap (2019).
Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists. (eds. Archibald, J. M. et al.) 1–1657 (Springer, 2017).
Okamura, T. & Kondo, R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 166, 409–421 (2015).
Google Scholar
Rybarski, A. et al. Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur. J. Protistol.(in press).
Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239–247 (2005).
Google Scholar
Park, J. S. & Simpson, A. G. B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles: novel halotolerant heterotrophic stramenopiles. Environ. Microbiol. 12, 1173–1184 (2010).
Google Scholar
Moriya, M., Nakayama, T. & Inouye, I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist 151, 41–55 (2000).
Google Scholar
Živaljić, S. et al. Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from the deep sea. Mar. Biol. 167, 63 (2020).
Google Scholar
Source: Ecology - nature.com