in

High canopy cover of invasive Acer negundo L. affects ground vegetation taxonomic richness

  • 1.

    Vinogradova, Y. K., Mayorov, S. R. & Khorun, L. V. Chernaya kniga flory Sredney Rossii (Chuzherodnye vidy rasteniy v ekosistemakh Sredney Rossii) (The Black-book of the flora of the Middle Russia (Alien species in the plant communities of the Middle Russia). (GEOS, 2010).

  • 2.

    Straigytė, L., Cekstere, G., Laivins, M. & Marozas, V. The spread, intensity and invasiveness of the Acer negundo in Riga and Kaunas. Dendrobiology 74, 157–168 (2015).

    Article 

    Google Scholar 

  • 3.

    Merceron, N. R., Lamarque, L. J., Delzon, S. & Porté, A. J. Killing it softly: girdling as an efficient eco-friendly method to locally remove invasive Acer negundo. Ecol. Restor. 34, 297–305 (2016).

    Article 

    Google Scholar 

  • 4.

    Gusev, A. P., Shpilevskaya, N. S. & Veselkin, D. V. The influence of Acer negundo L. on progressive successions in Belarusian landscapes. Vestnik Vitebskogo Gosudarstvennogo Universiteta. 94, 47–53 (2017).

    Google Scholar 

  • 5.

    Veselkin, D. V. & Korzhinevskaya, A. A. Spatial factors of understory adventization in park forests of a large city. Izvestiya Akademii Nauk, Seriya Geograficheskaya. 4, 54–64 (2018).

    Google Scholar 

  • 6.

    Veselkin, D. V., Korzhinevskaya, A. A. & Podgayevskaya, E. N. The species composition and abundance of alien and invasive understory shrubs and trees in urban forests of Yekaterinburg. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 42, 102–118 (2018).

    Google Scholar 

  • 7.

    Emelyanov, A. V. & Frolova, S. V. Ash-leaf maple (Acer negundo L.) in coastal phytocenoses of the Vorona River. Russ. J. Biol. Invasions 2, 161–163 (2011).

    Article 

    Google Scholar 

  • 8.

    Saccone, P., Pagès, J.-P., Girel, J., Brun, J.-J. & Michalet, R. Acer negundo invasion along a successional gradient: Early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytol. 187, 831–842. https://doi.org/10.1111/j.1469-8137.2010.03289.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Kostina, M. V., Yasinskaya, O. I., Barabanshchikova, N. S. & Orlyuk, F. A. Toward a issue of box elder invasion into the forests around Moscow. Russ. J. Biol. Invasions 7, 47–51 (2016).

    Article 

    Google Scholar 

  • 10.

    Veselkin, D. V. & Dubrovin, D. I. Diversity of the grass layer of urbanized communities dominated by invasive Acer negundo. Russ. J. Ecol. 50, 413–421 (2019).

    Article 

    Google Scholar 

  • 11.

    Reinhart, K. O., Greene, E. & Callaway, R. M. Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the Rocky Mountains. Ecography 28, 573–582 (2005).

    Article 

    Google Scholar 

  • 12.

    Schuster, M. J. & Reich, P. B. Amur maple (Acer ginnala): an emerging invasive plant in North America. Biol. Invasions 20, 2997–3007 (2018).

    Article 

    Google Scholar 

  • 13.

    Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Article 

    Google Scholar 

  • 14.

    Gorchov, D. L. & Trisel, D. E. Competitive effects of the invasive shrub, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. Plant Ecol. 166, 13–24 (2003).

    Article 

    Google Scholar 

  • 15.

    Knight, K. S., Oleksyn, J., Jagodzinski, A. M., Reich, P. B. & Kasprowicz, M. Overstorey tree species regulate colonization by native and exotic plants: A source of positive relationships between understorey diversity and invasibility. Divers. Distrib. 14, 666–675 (2008).

    Article 

    Google Scholar 

  • 16.

    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).

    Article 

    Google Scholar 

  • 17.

    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia 141, 612–619 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00501 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Bonifacio, E. et al. Alien red oak affects soil organic matter cycling and nutrient availability in low-fertility well-developed soils. Plant Soil 395, 215–229 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Horodecki, P. & Jagodzínski, A. M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 406, 1–11 (2017).

    Article 

    Google Scholar 

  • 21.

    Zhang, P., Li, B., Wu, J. & Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol. Lett. 22, 200–210 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040140 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Suding, K. N. et al. Consequences of plant-soil feedbacks in invasion. J. Ecol. 101, 298–308 (2013).

    Article 

    Google Scholar 

  • 25.

    Mueller, K. E. et al. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Kamczyc, J., Dyderski, M. K., Horodecki, P. & Jagodzinski, A. M. Mite communities (Acari, Mesostigmata) in the initially decomposed ‘litter islands’ of 11 tree species in scots pine (Pinus sylvestris L.) forest. Forests https://doi.org/10.3390/f10050403 (2019).

    Article 

    Google Scholar 

  • 27.

    Veselkin, D. V., Rafikova, O. S. & Ekshibarov, E. D. The soil of invasive Acer negundo thickets is unfavorable for mycorrhizal formation in native herbs. Zh. Obshch. Biol. 80, 214–225 (2019).

    Google Scholar 

  • 28.

    Gilliam, F. S. & Roberts, M. R. Interactions between the herbaceous layer and overstory canopy of eastern forests in The herbaceous layer in forests of Eastern North America (ed. Gilliam, F. S.) 233–254 (Oxford, 2014).

  • 29.

    Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Czapiewska, N., Dyderski, M. K. & Jagodzinski, A. M. Seasonal dynamics of floodplain forest understory—Impacts of degradation, light availability and temperature on biomass and species composition. Forests https://doi.org/10.3390/f10010022 (2019).

    Article 

    Google Scholar 

  • 31.

    Canham, C. D., Finzi, A. C., Pacala, S. W. & Burbank, D. H. Causes and consequences of resource heterogeneity in forests: Interspecific variation in light transmission by canopy trees. Can. J. For. Res. 24, 337–349 (1994).

    Article 

    Google Scholar 

  • 32.

    Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).

    Article 

    Google Scholar 

  • 33.

    Reinhart, K. O., Gurnee, J., Tirado, R. & Callaway, R. M. Invasion through quantitative effects: Intense shade drives native decline and invasive success. Ecol. Appl. 16, 1821–1831 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Nilsson, C., Engelmark, O., Cory, J., Forsslund, A. & Carlborg, E. Differences in litter cover and understory flora between stands of introduced lodgepole pine and native Scots pine in Sweden. For. Ecol. Manag. 255, 1900–1905 (2008).

    Article 

    Google Scholar 

  • 35.

    Bravo-Monasterio, P., Pauchard, A. & Fajardo, A. Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol. Invasions 18, 1883–1894 (2016).

    Article 

    Google Scholar 

  • 36.

    Lanta, V., Hyvönen, T. & Norrdahl, K. Non-native and native shrubs have differing impacts on species diversity and composition of associated plant communities. Plant Ecol. 214, 1517–1528 (2013).

    Article 

    Google Scholar 

  • 37.

    Dyderski, M. K. & Jagodzinski, A. M. Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests https://doi.org/10.3390/f10110951 (2019).

    Article 

    Google Scholar 

  • 38.

    Bottollier-Curtet, M. et al. Light interception principally drives the understory response to boxelder invasion in riparian forests. Biol. Invasions 14, 1445–1458 (2012).

    Article 

    Google Scholar 

  • 39.

    Cusack, D. F. & McCleery, T. L. Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests. For. Ecol. Manag. 318, 34–43 (2014).

    Article 

    Google Scholar 

  • 40.

    Berg, C., Drescherl, A. & Essl, F. Using relevé-based metrics to explain invasion patterns of alien trees in temperate forests. Tuexenia. 37, 127–142 (2017).

    Google Scholar 

  • 41.

    Hladyz, S., Abjornsson, K., Giller, P. S. & Woodward, G. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48, 443–452 (2011).

    Article 

    Google Scholar 

  • 42.

    Call, L. J. & Nilsen, E. T. Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol. 176, 275–285 (2005).

    Article 

    Google Scholar 

  • 43.

    Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).

    Article 

    Google Scholar 

  • 44.

    Kumar, A. S. & Bais, H. P. Allelopathy and exotic plant invasion in Plant communication from an ecological perspective. Signaling and communication in plants (ed. Baluška, F. & Ninkovic, V.) 61–74 (Berlin, 2010).

  • 45.

    Cipollini, D., Rigsby, C. M. & Barto, E. K. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38, 714–727 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Nielsen, J. A., Frew, R. D., Whigam, P. A., Callaway, R. M. & Dickinson, K. J. M. Germination and growth responses of co-occurring grass species to soil from under invasive Thymus vulgaris. Allelopath. J. 35, 139–152 (2015).

    Google Scholar 

  • 47.

    Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. Evolution of plant defences along an invasion chronosequence: Defence is lost due to enemy release—but not forever. J. Ecol. 105, 255–264 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Maron, J. L. & Marler, M. Effects of native species diversity and resource additions on invader impact. Am. Nat. 172, 18–33 (2008).

    Article 

    Google Scholar 

  • 49.

    Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).

    Article 

    Google Scholar 

  • 50.

    Adams, J. M. et al. A cross-continental test of the enemy release hypothesis: leaf herbivory on Acer platanoides (L.) is three times lower in North America than in its native Europe. Biol. Invasions 11, 1005–1016 (2009).

    Article 

    Google Scholar 

  • 51.

    Cincotta, C. L., Adams, J. M. & Holzapfel, C. Testing the enemy release hypothesis: A comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol. Invasions 11, 379–388 (2009).

    Article 

    Google Scholar 

  • 52.

    Veselkin, D. V. et al. Levels of leaf damage by phyllophages in invasive Acer negundo and Native Betula pendula and Salix caprea. Russ. J. Ecol. 50, 511–516 (2019).

    Article 

    Google Scholar 

  • 53.

    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).

    Google Scholar 

  • 54.

    Csiszár, A. Allelopathic effect of invasive woody plant species in Hungary. Acta Silvatica et Lignaria Hungarica. 5, 9–17 (2009).

    Google Scholar 

  • 55.

    Csiszár, Á. et al. Allelopathic potential of some invasive plant species occurring in Hungary. Allelopath. J. 31, 309–318 (2013).

    Google Scholar 

  • 56.

    Yeryomenko, Y. A. Allelopathic activity of invasive arboreal species. Russ. J. Biol. Invasions 5, 146–150 (2014).

    Article 

    Google Scholar 

  • 57.

    Veselkin, D. V., Kiseleva, O. A., Ekshibarov, E. D., Rafikova, O. S. & Korzhinevskaya, A. A. Abundance and diversity of seedlings of the soil seed bank in the monospecific stands of the invasive species Acer negundo L.. Russ. J. Biol. Invasions. 9, 108–113 (2018).

    Article 

    Google Scholar 

  • 58.

    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004 (European Topic Centre on Nature Protection and Biodiversity, (2004).

  • 59.

    Dopico, E., Ardura, A. & Garcia-Valguez, E. Exploring changes in biodiversity through pictures: A citizen science experience. Soc. Nat. Resour. 30, 1049–1063. https://doi.org/10.1080/08941920.2017.1284292 (2017).

    Article 

    Google Scholar 

  • 60.

    Fitzgerald, N. B., Kirkpatrick, J. B. & Scott, J. J. Rephotography, permanent plots and remote sensing data provide varying insights on vegetation change on subantarctic Macquarie Island, 1980–2015. Austral Ecol. https://doi.org/10.1111/aec.13015 (2021).

    Article 

    Google Scholar 

  • 61.

    Rosenberg, M. S. & Anderson, C. D. PASSAGE: Pattern analysis, spatial statistics, and geographic exegesis version 2. Methods Ecol. Evol. 2, 229–232. https://doi.org/10.1111/j.2041-210X.2010.00081.x (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization