in

High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water

  • 1.

    Balcombe, P., Speirs, J. F., Brandon, N. P. & Hawkes, A. D. Methane emissions: choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 20, 1323–1339 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Nisbet, E. G. et al. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Glob. Biogeochem. Cycles 30, 1356–1370 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Worden, J. R. et al. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8, 2227 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. 116, 2805–2813 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Sanches, L. F., Guenet, B., Marinho, C. C., Barros, N. & de Assis Esteves, F. Global regulation of methane emission from natural lakes. Sci. Rep. 9, 255 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Günthel, M. et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 10, 5497 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Bogard, M. J. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 5, 5350 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Tang, K. W., McGinnis, D. F., Ionescu, D. & Grossart, H.-P. Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Technol. Lett. 3, 227–233 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Donis, D. et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 8, 1661 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W. & Tang, K. W. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc. Natl Acad. Sci. 108, 19657–19661 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Del Sontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. & Reche, I. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs. Biogeosciences 17, 3223–3245 (2020).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 108 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Schagerl, M. Soda Lakes of East Africa. (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8.

  • 20.

    Pecoraino, G., D’Alessandro, W. & Inguaggiato, S. The Other Side of the Coin: Geochemistry of Alkaline Lakes in Volcanic Areas. in Advances in Volcanology 219–237 (2015). https://doi.org/10.1007/978-3-642-36833-2_9.

  • 21.

    Kempe, S. & Kazmierczak, J. Soda Lakes. in Encyclopedia of Geobiology (eds. Reitner, J. & Thiel, V.) 824–829 (Springer Netherlands, 2011). https://doi.org/10.1007/978-1-4020-9212-1_191.

  • 22.

    Lunt, M. F. et al. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmos. Chem. Phys. Discuss. 19, 14721–14740 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Tollefson, J. Tropical Africa could be a key to solving methane mystery. Nature 566, 165–166 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10, 4230 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Butturini, A. et al. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley. Water Res. 173, 115532 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Sorokin, D. Y. et al. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol. Ecol. 91, 1–12 (2015).

  • 27.

    Juutinen, S. et al. Methane dynamics in different boreal lake types. Biogeosciences 6, 209–223 (2009).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Encinas Fernández, J., Peeters, F. & Hofmann, H. On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J. Geophys. Res. Biogeosci. 121, 2717–2726 (2016).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Bloom, A. A. et al. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Vo, T. B. T. et al. Methane emission from rice cultivation in different agro-ecological zones of the Mekong river delta: seasonal patterns and emission factors for baseline water management. Soil Sci. Plant Nutr. 64, 47–58 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Devol, A. H., Richey, J. E., Forsberg, B. R. & Martinelli, L. A. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J. Geophys. Res. 95, 16417 (1990).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Sha, C. et al. Methane emissions from freshwater riverine wetlands. Ecol. Eng. 37, 16–24 (2011).

    Article 

    Google Scholar 

  • 33.

    Sepulveda-Jauregui, A. et al. Eutrophication exacerbates the impact of climate warming on lake methane emission. Sci. Total Environ. 636, 411–419 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: connecting whole-lake budgets and CH 4 emissions. J. Geophys. Res. Biogeosciences 113, 1–13 (2008).

    Article 
    CAS 

    Google Scholar 

  • 35.

    West, W. E., McCarthy, S. M. & Jones, S. E. Phytoplankton lipid content influences freshwater lake methanogenesis. Freshw. Biol. 60, 2261–2269 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Grasset, C. et al. Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnol. Oceanogr. 63, 1488–1501 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Pacheco, F., Roland, F. & Downing, J. Eutrophication reverses whole-lake carbon budgets. Inl. Waters 4, 41–48 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Li, S., Bush, R. T., Ward, N. J., Sullivan, L. A. & Dong, F. Air–water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought. Sci. Total Environ. 542, 453–468 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Melack, J. M., Kilham, P. & Fisher, T. R. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52, 321–326 (1982).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Borges, A. V. et al. Variability of Carbon Dioxide and Methane in the Epilimnion of Lake Kivu. in Lake Kivu 47–66 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-4243-7_4.

  • 42.

    Cerling, T. E. Pore water chemistry of an alkaline lake: Lake Turkana, Kenya. in The Limnology, Climatology and Paleoclimatology of the East African Lakes 225–240 (Routledge, 2019). https://doi.org/10.1201/9780203748978-12.

  • 43.

    Hoefs, J. Stable Isotope Geochemistry. Stable Isotope Geochemistry: Sixth Edition (Springer Berlin Heidelberg, 2009). https://doi.org/10.1007/978-3-540-70708-0.

  • 44.

    Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Orellana, E. et al. Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste. Water Sci. Technol. 79, 1956–1965 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Vuillemin, A. et al. Metabolic potential of microbial communities from ferruginous sediments. Environ. Microbiol. 20, 4297–4313 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Appel, J., Phunpruch, S., Steinmüller, K. & Schulz, R. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173, 333–338 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Xiang, X. et al. Distribution of bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci. Rep. 7, 45028 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    McGenity, T. J. & Sorokin, D. Y. Methanogens and methanogenesis in hypersaline environments. in Biogenesis of Hydrocarbons 1–27 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-53114-4_12-1.

  • 54.

    Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Wasmund, K. et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. Isme J. 8, 383 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Fazi, S. et al. Microbiomes in soils exposed to naturally high concentrations of CO2 (Bossoleto Mofette Tuscany, Italy). Front. Microbiol. 10, 1–17 (2019).

  • 57.

    Nolla-Ardèvol, V., Strous, M. & Tegetmeyer, H. E. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front. Microbiol. 6, 1–21 (2015).

  • 58.

    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Leygeber, M. et al. Analyzing microbial population heterogeneity—expanding the toolbox of microfluidic single-cell cultivations. J. Mol. Biol. 431, 4569–4588 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Klawonn, I., Bonaglia, S., Brüchert, V. & Ploug, H. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Romero, L., Camacho, A., Vicente, E. & Miracle, M. R. Sedimentation patterns of photosynthetic bacteria based on pigment markers in meromictic Lake La Cruz (Spain): paleolimnological implications. J. Paleolimnol. 35, 167–177 (2006).

    Article 

    Google Scholar 

  • 62.

    Verschuren, D. Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44, 1103–1113 (1999).

    CAS 
    Article 

    Google Scholar 

  • 63.

    MacIntyre, S. & Melack, J. M. Meromixis in an equatorial African soda lake1. Limnol. Oceanogr. 27, 595–609 (1982).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Tassi, F. et al. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS One 13, e0193914 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Montegrossi, G., Tassi, F., Vaselli, O., Bidini, E. & Minissale, A. A new, rapid and reliable method for the determination of reduced sulphur (S2−) species in natural water discharges. Appl. Geochem. 21, 849–857 (2006).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. https://doi.org/10.1016/0043-1354(78)90107-0 (1978).

    Article 

    Google Scholar 

  • 67.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Herzsprung, P. et al. Differences in DOM of rewetted and natural peatlands—results from high-field FT-ICR-MS and bulk optical parameters. Sci. Total Environ. 586, 770–781 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Mackenzie, F. T. & Lerman, A. Carbon in the Geobiosphere—Earth’s Outer Shell—. Carbon in the Geobiosphere—Earth’s Outer Shell25, (Springer Netherlands, 2006).

  • 71.

    Liss, P. S. & Slater, P. G. Flux of gases across the air-sea interface. Nature 247, 181–184 (1974).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    Article 

    Google Scholar 

  • 73.

    Crusius, J. & Wanninkhof, R. Gas transfer velocities measured at low wind speed over a lake. Limnol. Oceanogr. 48, 1010–1017 (2003).

    Article 

    Google Scholar 

  • 74.

    Melack, J. M. & MacIntyre, S. Morphometry and physical processes of East African Soda Lakes. in Soda Lakes of East Africa 61–76 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8_3.

  • 75.

    Hoover, T. E. & Berkshire, D. C. Effects of hydration on carbon dioxide exchange across an air-water interface. J. Geophys. Res. 74, 456–464 (1969).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Wanninkhof, R. & Knox, M. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41, 689–697 (1996).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Zeebe, R. E. On the molecular diffusion coefficients of dissolved, and and their dependence on isotopic mass. Geochim. Cosmochim. Acta 75, 2483–2498 (2011).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Johnson, K. S. Carbon dioxide hydration and dehydration kinetics in seawater1. Limnol. Oceanogr. 27, 849–855 (1982).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Clark, I. Groundwater Geochemistry and Isotopes. Groundwater Geochemistry and Isotopes (CRC Press, 2015). https://doi.org/10.1201/b18347.

  • 80.

    Crognale, S. et al. Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci. Total Environ. 651, 93–102 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Tonanzi, B. et al. Long-term anaerobic digestion of food waste at semi-pilot scale: relationship between microbial community structure and process performances. Biomass-. Bioenergy 118, 55–64 (2018).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Pechar, L. Use of an acetone: methanol mixture for the extraction and spectrophotometric determination of chlorophyll-a in phytoplankton. Stud. Hydrobiol. Suppl. 78, 99–117 (1987).

    CAS 

    Google Scholar 

  • 84.

    Fazi, S., Amalfitano, S., Pizzetti, I. & Pernthaler, J. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content. Syst. Appl. Microbiol. 30, 463–470 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Amalfitano, S. et al. Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytom. Part A 93, 194–200 (2018).

    Article 

    Google Scholar 

  • 86.

    Callieri, C., Amalfitano, S., Corno, G. & Bertoni, R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol. 92, 1–10 (2016).

  • 87.

    Hammer, Ø., Harper, D. A. Ta. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 88.

    Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF 6. Limnol. Oceanogr. 43, 647–656 (1998).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Nightingale, P. D. et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Pathfinder satellite paves way for constellation of tropical-storm observers

    Designing exploratory robots that collect data for marine scientists