Guengant, J.-P. & May, J. F. African demography. Glob. J. Emerg. Mark. Econ. 5, 215–267 (2013).
Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5, 27060 (2015).
Google Scholar
Eder, M. et al. Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity and co-infection. Infect. Dis. Poverty 7, 1–24 (2018).
Google Scholar
Keiser, J. et al. Urbanization in sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).
Google Scholar
Tusting, L. S. et al. Environmental temperature and growth faltering in African children: A cross-sectional study. Lancet Planet. Health 4, e116–e123. https://doi.org/10.1016/S2542-5196(20)30037-1 (2020).
Google Scholar
Hay, S. I. et al. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 21, 52–53 (2005).
Google Scholar
Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211. https://doi.org/10.1038/nature15535 (2015).
Google Scholar
Kamau, A., Mogeni, P., Okiro, E. A., Snow, R. W. & Bejon, P. A systematic review of changing malaria disease burden in sub-Saharan Africa since 2000: Comparing model predictions and empirical observations. BMC Med. 18, 1–11 (2020).
Google Scholar
Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).
Google Scholar
World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020).
Google Scholar
World Health Organization. World Malaria Report 2012 (World Health Organization, 2012).
Google Scholar
Report, W. M. . Licence: CC BY-NC-SA 3.0 IGO (World Health Organization, 2019).
Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).
Google Scholar
Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98. https://doi.org/10.1016/j.pt.2010.08.004 (2011).
Google Scholar
Moyes, C. L. et al. Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc. Natl. Acad. Sci. 117, 22042–22050 (2020).
Google Scholar
Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Tropi. Dis. 11, e0005625 (2017).
Google Scholar
Staedke, S. G. et al. LLIN evaluation in Uganda Project (LLINEUP)—Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: Study protocol for a cluster-randomised trial. Trials 20, 1–13 (2019).
Google Scholar
Hemingway, J. et al. Country-level operational implementation of the global plan for insecticide resistance management. Proc. Natl. Acad. Sci. 110, 9397–9402. https://doi.org/10.1073/pnas.1307656110 (2013).
Google Scholar
Chanda, E. et al. Scale-up of integrated malaria vector control: Lessons from Malawi. Bull. World Health Organ. 94, 475 (2016).
Google Scholar
Derua, Y. A., Kweka, E. J., Kisinza, W. N., Githeko, A. K. & Mosha, F. W. Bacterial larvicides used for malaria vector control in sub-Saharan Africa: Review of their effectiveness and operational feasibility. Parasit. Vectors 12, 1–18 (2019).
Google Scholar
WHO. Larval Source Management: A Supplementary Measure for Malaria Vector Control (World Health Organization, 2013).
Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18, 1–9 (2019).
Google Scholar
Fillinger, U. & Lindsay, S. W. Larval source management for malaria control in Africa: Myths and reality. Malar J. https://doi.org/10.1186/1475-2875-10-353 (2011).
Google Scholar
Shousha, A. T. Species-eradication: The eradication of Anopheles gambioe from Upper Egypt, 1942–1945. Bull. World Health Organ. 1, 309 (1948).
Google Scholar
Utzinger, J., Tozan, Y. & Singer, B. H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med. Int. Health 6, 677–687. https://doi.org/10.1046/j.1365-3156.2001.00769.x (2001).
Google Scholar
Fillinger, U., Ndenga, B., Githeko, A. & Lindsay, S. W. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bull. World Health Organ. 87, 655–665 (2009).
Google Scholar
Choi, L., Majambere, S. & Wilson, A. L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev. 8, CD012736 (2019).
Google Scholar
Tusting, L. S. et al. Socioeconomic development as an intervention against malaria: A systematic review and meta-analysis. Lancet 382, 963–972. https://doi.org/10.1016/s0140-6736(13)60851-x (2013).
Google Scholar
Choi, L. & Wilson, A. Larviciding to control malaria. Cochrane Database Syst. Rev. 2017, CD012736. https://doi.org/10.1002/14651858.CD012736 (2017).
Google Scholar
Tusting, L. S. et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 8, CD008923 (2013).
Geissbuhler, Y. et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam. Tanzania. PLoS One. 4, e5107. https://doi.org/10.1371/journal.pone.0005107 (2009).
Google Scholar
Castro C. M. et al. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania. Malar J. 8, 57 (2009)
Google Scholar
Maheu-Giroux, M. & Castro, M. C. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE 8, e71638. https://doi.org/10.1371/journal.pone.0071638 (2013).
Google Scholar
World Health Organization. A Framework for Malaria Elimination (World Health Organization, 2017).
Wold Health Organization. 11th World Malaria Day “Ready to Beat Malaria” We are the Generation that can End Malaria (ed. World Health Organization). (World Health Oraganization, 2018).
Institut National de Statistiques and IFC. Enquête Démographique et de Santé du Cameroun (ed. INS. ICF.) 1–515 (INS, 2020).
Barbazan, P. et al. Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 13, 263–269 (1997).
Google Scholar
Hougard, J.-M. et al. Lutte contre Culex quinquefasciatus par Bacillus sphaericus: résultats d’une campagne pilote dans une agglomération urbaine d’Afrique équatoriale. Bulletin de l’organisation mondiale de la santé 71, 367–375 (1994).
Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): Influence of urban agriculture and pollution. Malar J. https://doi.org/10.1186/1475-2875-10-154 (2011).
Google Scholar
Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012, 1–10. https://doi.org/10.1155/2012/429817 (2012).
Google Scholar
Fondjo, E., Robert, V., Le Goff, G., Toto, J. & Carnevale, P. Urban malaria transmission in Yaounde (Cameroon). 2. Entomologic study in 2 semi urban districts. Bull. Soc. Pathol. Exot. 85, 57–63 (1992).
Google Scholar
Manga, L., Robert, V., Messi, J., Desfontaines, M. & Le Carnevale, P. paludisme urbain à Yaoundé, Cameroun. 1-Etude entomologique dans deux quartiers centraux. Mém. Soc. R Belge Entomol. 35, 155–162 (1992).
Doumbe-Belisse, P. et al. High malaria transmission sustained by Anopheles gambiae sl occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 3, 164 (2018).
Google Scholar
Talipouo, A. et al. Malaria prevention in the city of Yaoundé: Knowledge and practices of urban dwellers. Malar. J. 18, 167. https://doi.org/10.1186/s12936-019-2799-6 (2019).
Google Scholar
Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon. Parasite 27, 10 (2020).
Google Scholar
Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 1–15 (2019).
Google Scholar
Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).
Google Scholar
Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).
Google Scholar
Ngadjeu, C. S. et al. Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malar. J. 19, 53 (2020).
Google Scholar
Nkahe, D. L. et al. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res. 5, 171 (2020).
Google Scholar
Historique-Meteo. https://www.historique-meteo.net/afrique/cameroun/ (2020).
Govella, N. et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar. J. 8, 157. https://doi.org/10.1186/1475-2875-8-157 (2009).
Google Scholar
Wilson, A. L. et al. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 31, 380–390 (2015).
Google Scholar
Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. & Becker, N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: Operational observations from a rural town in western Kenya. Trop. Med. Int. Health 9, 1274–1289 (2004).
Google Scholar
Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malar. J. 6, 1–14 (2007).
Google Scholar
Gillies, M. T. & Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (South African Institute for Medical Research, 1987).
Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184 (2010).
Google Scholar
Fossog Tene, B. et al. Resistance to DDT in an urban setting: Common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé, Cameroon. PLoS ONE 8, e61408. https://doi.org/10.1371/journal.pone.0061408 (2013).
Google Scholar
Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar. J. 15, 424. https://doi.org/10.1186/s12936-016-1483-3 (2016).
Google Scholar
Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155. https://doi.org/10.1186/s12936-015-0675-6 (2015).
Google Scholar
Bamou, R. et al. Assessment of the Anophelinae blood seeking bionomic and pyrethroids resistance of local malaria vectors in the forest region of Southern Cameroon. JEZS 8, 1054–1062 (2020).
World Health Organization. The Role of Larviciding for Malaria Control in Sub-Saharan Africa: Interim Position Statement (World Health Organization, 2012).
Talipouo, A. et al. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci. Rep. 11, 1–11 (2021).
Google Scholar
Haines, A. et al. Promoting health and advancing development through improved housing in low-income settings. J. Urban Health 90, 810–831 (2013).
Google Scholar
Tusting, L. S. et al. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, e1002234. https://doi.org/10.1371/journal.pmed.1002234 (2017).
Google Scholar
Tusting, L. S. et al. The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. Malar. J. 14, 209. https://doi.org/10.1186/s12936-015-0724-1 (2015).
Google Scholar
Organization, W. H. Report of the Nineteenth WHOPES Working Group Meeting: WHO/HQ, Geneva, 8–11 February 2016: Review of Veeralin LN, VectoMax GR, Bactivec SC.(World Health Organization, 2016).
Service M. Mosquito Ecology. Field Sampling Methods (Elsevier Applied Science, 1993).
Google Scholar
Edwards, F. W. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae (1941).
Edwards, F. W. Mosquitoes of the Ethiopian region. III, Culicine adults and pupae (Brit. Mus. Nat. Hist., 1941).
Gillies, M. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Pub South Afr Inst Med Res 55, 143 (1987).
Wagtech, P. Water Quality Testing 1–139. https://www.palintest.com/product-categories/wagtech/ (Wagtech, 2012).
Gillies, M. T. & DeMeillon, B. The Anopheline of Africa, south of the Sahara (Ethiopian zoogeographical region) Johannesburg: publication of south African Institute of Medical Research no. 54. (SAIMR, 1968).
Gillies, T. & Coetzee, M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) (Publication of the South African Institute of Medical Research, 1987).
Santolamazza, F. et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar. J. 7, 74 (2008).
Google Scholar
Koekemoer, L., Kamau, L., Hunt, R. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: culicidae) group. Am. J. Trop. Med. Hyg. 66, 804–811 (2002).
Google Scholar
Livak, K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634 (1984).
Google Scholar
Wirtz, R., Burkot, T., Graves, P. & Andre, R. Field evaluation of enzymelinked immunosorbent assays for P. falciparum and P. vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua, new Guinea. J. Med. Entomol. 24, 433–437. https://doi.org/10.1093/jmedent/24.4.433 (1987).
Google Scholar
Bass, C. et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar. J. 7, 177 (2008).
Google Scholar
WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes (WHO, 2013). https://doi.org/10.1371/journal.pone.0013140.
Google Scholar
Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14. https://doi.org/10.1186/1475-2875-6-111 (2007).
Google Scholar
Mulla, M. S., Norland, L. R., Fanara, D. M., Darwazeh, H. A. & McKean, D. W. Control of chironomid midges in recreational lakes. J. Econ. Entomol. 64, 300–307 (1971).
Google Scholar
Source: Ecology - nature.com