in

High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial

  • 1.

    Guengant, J.-P. & May, J. F. African demography. Glob. J. Emerg. Mark. Econ. 5, 215–267 (2013).

    Google Scholar 

  • 2.

    Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5, 27060 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Eder, M. et al. Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity and co-infection. Infect. Dis. Poverty 7, 1–24 (2018).

    Article 

    Google Scholar 

  • 4.

    Keiser, J. et al. Urbanization in sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Tusting, L. S. et al. Environmental temperature and growth faltering in African children: A cross-sectional study. Lancet Planet. Health 4, e116–e123. https://doi.org/10.1016/S2542-5196(20)30037-1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Hay, S. I. et al. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 21, 52–53 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211. https://doi.org/10.1038/nature15535 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Kamau, A., Mogeni, P., Okiro, E. A., Snow, R. W. & Bejon, P. A systematic review of changing malaria disease burden in sub-Saharan Africa since 2000: Comparing model predictions and empirical observations. BMC Med. 18, 1–11 (2020).

    Article 

    Google Scholar 

  • 9.

    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020).

    Book 

    Google Scholar 

  • 11.

    World Health Organization. World Malaria Report 2012 (World Health Organization, 2012).

    Book 

    Google Scholar 

  • 12.

    Report, W. M. . Licence: CC BY-NC-SA 3.0 IGO (World Health Organization, 2019).

    Google Scholar 

  • 13.

    Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98. https://doi.org/10.1016/j.pt.2010.08.004 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Moyes, C. L. et al. Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc. Natl. Acad. Sci. 117, 22042–22050 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Tropi. Dis. 11, e0005625 (2017).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Staedke, S. G. et al. LLIN evaluation in Uganda Project (LLINEUP)—Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: Study protocol for a cluster-randomised trial. Trials 20, 1–13 (2019).

    Article 

    Google Scholar 

  • 18.

    Hemingway, J. et al. Country-level operational implementation of the global plan for insecticide resistance management. Proc. Natl. Acad. Sci. 110, 9397–9402. https://doi.org/10.1073/pnas.1307656110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Chanda, E. et al. Scale-up of integrated malaria vector control: Lessons from Malawi. Bull. World Health Organ. 94, 475 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Derua, Y. A., Kweka, E. J., Kisinza, W. N., Githeko, A. K. & Mosha, F. W. Bacterial larvicides used for malaria vector control in sub-Saharan Africa: Review of their effectiveness and operational feasibility. Parasit. Vectors 12, 1–18 (2019).

    Article 

    Google Scholar 

  • 21.

    WHO. Larval Source Management: A Supplementary Measure for Malaria Vector Control (World Health Organization, 2013).

    Google Scholar 

  • 22.

    Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18, 1–9 (2019).

    Article 

    Google Scholar 

  • 23.

    Fillinger, U. & Lindsay, S. W. Larval source management for malaria control in Africa: Myths and reality. Malar J. https://doi.org/10.1186/1475-2875-10-353 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Shousha, A. T. Species-eradication: The eradication of Anopheles gambioe from Upper Egypt, 1942–1945. Bull. World Health Organ. 1, 309 (1948).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Utzinger, J., Tozan, Y. & Singer, B. H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med. Int. Health 6, 677–687. https://doi.org/10.1046/j.1365-3156.2001.00769.x (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Fillinger, U., Ndenga, B., Githeko, A. & Lindsay, S. W. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bull. World Health Organ. 87, 655–665 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Choi, L., Majambere, S. & Wilson, A. L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev. 8, CD012736 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Tusting, L. S. et al. Socioeconomic development as an intervention against malaria: A systematic review and meta-analysis. Lancet 382, 963–972. https://doi.org/10.1016/s0140-6736(13)60851-x (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Choi, L. & Wilson, A. Larviciding to control malaria. Cochrane Database Syst. Rev. 2017, CD012736. https://doi.org/10.1002/14651858.CD012736 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Tusting, L. S. et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 8, CD008923 (2013).

    Google Scholar 

  • 31.

    Geissbuhler, Y. et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam. Tanzania. PLoS One. 4, e5107. https://doi.org/10.1371/journal.pone.0005107 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Castro C. M. et al. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania. Malar J. 8, 57 (2009)

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Maheu-Giroux, M. & Castro, M. C. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE 8, e71638. https://doi.org/10.1371/journal.pone.0071638 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    World Health Organization. A Framework for Malaria Elimination (World Health Organization, 2017).

    Google Scholar 

  • 35.

    Wold Health Organization. 11th World Malaria Day “Ready to Beat Malaria” We are the Generation that can End Malaria (ed. World Health Organization). (World Health Oraganization, 2018).

    Google Scholar 

  • 36.

    Institut National de Statistiques and IFC. Enquête Démographique et de Santé du Cameroun (ed. INS. ICF.) 1–515 (INS, 2020).

    Google Scholar 

  • 37.

    Barbazan, P. et al. Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 13, 263–269 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Hougard, J.-M. et al. Lutte contre Culex quinquefasciatus par Bacillus sphaericus: résultats d’une campagne pilote dans une agglomération urbaine d’Afrique équatoriale. Bulletin de l’organisation mondiale de la santé 71, 367–375 (1994).

    Google Scholar 

  • 39.

    Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): Influence of urban agriculture and pollution. Malar J. https://doi.org/10.1186/1475-2875-10-154 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012, 1–10. https://doi.org/10.1155/2012/429817 (2012).

    Article 

    Google Scholar 

  • 41.

    Fondjo, E., Robert, V., Le Goff, G., Toto, J. & Carnevale, P. Urban malaria transmission in Yaounde (Cameroon). 2. Entomologic study in 2 semi urban districts. Bull. Soc. Pathol. Exot. 85, 57–63 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Manga, L., Robert, V., Messi, J., Desfontaines, M. & Le Carnevale, P. paludisme urbain à Yaoundé, Cameroun. 1-Etude entomologique dans deux quartiers centraux. Mém. Soc. R Belge Entomol. 35, 155–162 (1992).

    Google Scholar 

  • 43.

    Doumbe-Belisse, P. et al. High malaria transmission sustained by Anopheles gambiae sl occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 3, 164 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Talipouo, A. et al. Malaria prevention in the city of Yaoundé: Knowledge and practices of urban dwellers. Malar. J. 18, 167. https://doi.org/10.1186/s12936-019-2799-6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon. Parasite 27, 10 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 1–15 (2019).

    Article 

    Google Scholar 

  • 47.

    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Ngadjeu, C. S. et al. Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malar. J. 19, 53 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Nkahe, D. L. et al. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res. 5, 171 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Historique-Meteo. https://www.historique-meteo.net/afrique/cameroun/ (2020).

  • 52.

    Govella, N. et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar. J. 8, 157. https://doi.org/10.1186/1475-2875-8-157 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Wilson, A. L. et al. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 31, 380–390 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. & Becker, N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: Operational observations from a rural town in western Kenya. Trop. Med. Int. Health 9, 1274–1289 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malar. J. 6, 1–14 (2007).

    Article 

    Google Scholar 

  • 56.

    Gillies, M. T. & Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (South African Institute for Medical Research, 1987).

    Google Scholar 

  • 57.

    Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Fossog Tene, B. et al. Resistance to DDT in an urban setting: Common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé, Cameroon. PLoS ONE 8, e61408. https://doi.org/10.1371/journal.pone.0061408 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar. J. 15, 424. https://doi.org/10.1186/s12936-016-1483-3 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155. https://doi.org/10.1186/s12936-015-0675-6 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Bamou, R. et al. Assessment of the Anophelinae blood seeking bionomic and pyrethroids resistance of local malaria vectors in the forest region of Southern Cameroon. JEZS 8, 1054–1062 (2020).

    Google Scholar 

  • 62.

    World Health Organization. The Role of Larviciding for Malaria Control in Sub-Saharan Africa: Interim Position Statement (World Health Organization, 2012).

    Google Scholar 

  • 63.

    Talipouo, A. et al. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci. Rep. 11, 1–11 (2021).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Haines, A. et al. Promoting health and advancing development through improved housing in low-income settings. J. Urban Health 90, 810–831 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Tusting, L. S. et al. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, e1002234. https://doi.org/10.1371/journal.pmed.1002234 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Tusting, L. S. et al. The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. Malar. J. 14, 209. https://doi.org/10.1186/s12936-015-0724-1 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Organization, W. H. Report of the Nineteenth WHOPES Working Group Meeting: WHO/HQ, Geneva, 8–11 February 2016: Review of Veeralin LN, VectoMax GR, Bactivec SC.(World Health Organization, 2016).

  • 68.

    Service M. Mosquito Ecology. Field Sampling Methods (Elsevier Applied Science, 1993).

    Book 

    Google Scholar 

  • 69.

    Edwards, F. W. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae (1941).

  • 70.

    Edwards, F. W. Mosquitoes of the Ethiopian region. III, Culicine adults and pupae (Brit. Mus. Nat. Hist., 1941).

  • 71.

    Gillies, M. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Pub South Afr Inst Med Res 55, 143 (1987).

    Google Scholar 

  • 72.

    Wagtech, P. Water Quality Testing 1–139. https://www.palintest.com/product-categories/wagtech/ (Wagtech, 2012).

  • 73.

    Gillies, M. T. & DeMeillon, B. The Anopheline of Africa, south of the Sahara (Ethiopian zoogeographical region) Johannesburg: publication of south African Institute of Medical Research no. 54. (SAIMR, 1968).

  • 74.

    Gillies, T. & Coetzee, M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) (Publication of the South African Institute of Medical Research, 1987).

    Google Scholar 

  • 75.

    Santolamazza, F. et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar. J. 7, 74 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Koekemoer, L., Kamau, L., Hunt, R. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: culicidae) group. Am. J. Trop. Med. Hyg. 66, 804–811 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Livak, K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Wirtz, R., Burkot, T., Graves, P. & Andre, R. Field evaluation of enzymelinked immunosorbent assays for P. falciparum and P. vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua, new Guinea. J. Med. Entomol. 24, 433–437. https://doi.org/10.1093/jmedent/24.4.433 (1987).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Bass, C. et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar. J. 7, 177 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes (WHO, 2013). https://doi.org/10.1371/journal.pone.0013140.

    Book 

    Google Scholar 

  • 81.

    Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14. https://doi.org/10.1186/1475-2875-6-111 (2007).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Mulla, M. S., Norland, L. R., Fanara, D. M., Darwazeh, H. A. & McKean, D. W. Control of chironomid midges in recreational lakes. J. Econ. Entomol. 64, 300–307 (1971).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Climate and sustainability classes expand at MIT