Kauffman, E. B. & Kramer, L. D. Zika virus mosquito vectors: competence, biology, and vector control. J. Infect. Dis. 216, S976–S990 (2017).
Google Scholar
Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala Cameroon. BMC Infect. Dis. 12, 275 (2012).
Google Scholar
Turell, M. J. et al. Vector competence of selected African mosquito (Diptera: Culicidae) Species for Rift Valley fever virus. J. Med. Entomol. 45, 102–108 (2008).
Google Scholar
Mbida, A. M. et al. Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary Littoral-Cameroon. J. Entomol. Zool. Stud. 4, 105–110 (2016).
Farajollahi, A., Fonseca, D. M., Kramer, L. D. & Kilpatrick, A. M. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 11, 1577–1585 (2011).
Google Scholar
Weissenböck, H., Hubálek, Z., Bakonyi, T. & Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280 (2010).
Google Scholar
Antonio-Nkondjio, C., Sandjo, N. N., Awono-Ambene, P. & Wondji, C. S. Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success. Parasit. Vectors 11, 57 (2018).
Google Scholar
Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).
Google Scholar
Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).
Google Scholar
Talipouo, A. et al. Comparative study of Culicidae biodiversity of Manoka island and Youpwe mainland area, Littoral Cameroon. Int. J. Biosci. 10, 9–18 (2017).
Google Scholar
PNLP. Plan Stratégique National 2019–2023. (2019).
Antonio-Nkondjio, C. et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit. Vectors 10, 472 (2017).
Google Scholar
Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).
Google Scholar
Chouaïbou, M. et al. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae sl from an area of extensive cotton cultivation in Northern Cameroon. Trop. Med. Int. Health 13, 476–486 (2008).
Google Scholar
Nwane, P. et al. Trends in DDT and pyrethroid resistance in Anopheles gambiaes. s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect. Dis. 9, 163 (2009).
Google Scholar
Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155 (2015).
Google Scholar
Fossog, B. T. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1–12 (2013).
Google Scholar
Antonio-Nkondjio, C. et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit. Vectors 12, 501 (2019).
Google Scholar
Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).
Google Scholar
Pocquet, N. et al. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean. PLoS ONE 8, 77855 (2013).
Google Scholar
Samantsidis, G.-R. et al. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B Biol. Sci. 287, 20200838 (2020).
Google Scholar
Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin West Africa. Acta Trop. 101, 207–216 (2007).
Google Scholar
Yadouléton, A. et al. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasit. Vectors 8, 17 (2015).
Google Scholar
Xu, Q., Wang, H., Zhang, L. & Liu, N. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene 379, 62–67 (2006).
Google Scholar
Martinez-Torres, D. et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pestic. Sci. 55, 1012–1020 (1999).
Google Scholar
Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).
Google Scholar
Djogbénou, L., Akogbéto, M. & Chandre, F. Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop. 107, 272–274 (2008).
Google Scholar
Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 78 (2012).
Google Scholar
Tmimi, F.-Z. et al. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit. Vectors 11, 51 (2018).
Google Scholar
Kothera, L. et al. Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS ONE 14, (2019).
Matowo, N. S. et al. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit. Vectors 12, 413 (2019).
Google Scholar
Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).
Google Scholar
Huang, Y. et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasit. Vectors 11, 6 (2018).
Google Scholar
Cameroun fiche pays populationData.net 2020. https://www.populationdata.net/pays/cameroun/.
Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé Cameroon. Parasite 27, 91 (2011).
Edwards, F. W. Mosquitoes of the Ethiopian Region. III.-Culicine adults and pupae. Mosquitoes Ethiop. Reg. III-Culicine Adults Pupae (1941).
Jupp, P. G. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. (Ekogilde Publishers, 1996).
Organization, W. H. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. (2016).
Feyereisen, R. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag. Sci. 71, 793–800 (2015).
Google Scholar
Smith, J. L. & Fonseca, D. M. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 70, 339–345 (2004).
Google Scholar
Scott, J. G., Yoshimizu, M. H. & Kasai, S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic. Biochem. Physiol. 120, 68–76 (2015).
Google Scholar
Bisset, J., Rodríguez, M. M. & Fernández, D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J. Med. Entomol. 43, 1185–1189 (2006).
Google Scholar
Low, V. L. et al. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin. J. Med. Entomol. 50, 103–111 (2013).
Google Scholar
Djogbénou, L., Noel, V. & Agnew, P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar. J. 9, 12 (2010).
Google Scholar
Labbé, P. et al. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol. Biol. Evol. 24, 1056–1067 (2007).
Google Scholar
Delannay, C. et al. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS ONE 13, e0199615 (2018).
Google Scholar
Georghiou, G. P. & Pasteur, N. Organophosphate Resistance and Esterase Pattern in a Natural Population of the Southern House Mosquito from California. J. Econ. Entomol. 73, 489–492 (1980).
Google Scholar
Xu, W. et al. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. Pestic. Biochem. Physiol. 142, 77–82 (2017).
Google Scholar
Gong, Y., Li, T., Feng, Y. & Liu, N. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Komagata, O., Kasai, S. & Tomita, T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40, 146–152 (2010).
Google Scholar
Liu, N., Li, T., Reid, W. R., Yang, T. & Zhang, L. Multiple Cytochrome P450 Genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes culex quinquefasciatus. PLoS ONE 6, e23403 (2011).
Google Scholar
Gordon, J. R. & Ottea, J. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 105, 971–978 (2012).
Google Scholar
Mouches, C. et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. 87, 2574–2578 (1990).
Google Scholar
Pasteur, N., Nancé, E. & Bons, N. Tissue localization of overproduced esterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 38, 791–801 (2001).
Google Scholar
Achaleke, J., Martin, T., Ghogomu, R. T., Vaissayre, M. & Brévault, T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag. Sci. Former. Pestic. Sci. 65, 1147–1154 (2009).
Google Scholar
Simma, E. A. et al. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST Manag. Sci. 75, 1808–1818 (2019).
Google Scholar
Subra, R. Biology and control of Culex pipiens quinquefasciatus Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).
Google Scholar
Source: Ecology - nature.com