in

High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon

  • 1.

    Kauffman, E. B. & Kramer, L. D. Zika virus mosquito vectors: competence, biology, and vector control. J. Infect. Dis. 216, S976–S990 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala Cameroon. BMC Infect. Dis. 12, 275 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Turell, M. J. et al. Vector competence of selected African mosquito (Diptera: Culicidae) Species for Rift Valley fever virus. J. Med. Entomol. 45, 102–108 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Mbida, A. M. et al. Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary Littoral-Cameroon. J. Entomol. Zool. Stud. 4, 105–110 (2016).

    Google Scholar 

  • 5.

    Farajollahi, A., Fonseca, D. M., Kramer, L. D. & Kilpatrick, A. M. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 11, 1577–1585 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Weissenböck, H., Hubálek, Z., Bakonyi, T. & Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Antonio-Nkondjio, C., Sandjo, N. N., Awono-Ambene, P. & Wondji, C. S. Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success. Parasit. Vectors 11, 57 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Talipouo, A. et al. Comparative study of Culicidae biodiversity of Manoka island and Youpwe mainland area, Littoral Cameroon. Int. J. Biosci. 10, 9–18 (2017).

    Article 

    Google Scholar 

  • 11.

    PNLP. Plan Stratégique National 2019–2023. (2019).

  • 12.

    Antonio-Nkondjio, C. et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit. Vectors 10, 472 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Chouaïbou, M. et al. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae sl from an area of extensive cotton cultivation in Northern Cameroon. Trop. Med. Int. Health 13, 476–486 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Nwane, P. et al. Trends in DDT and pyrethroid resistance in Anopheles gambiaes. s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect. Dis. 9, 163 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Fossog, B. T. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1–12 (2013).

    Article 

    Google Scholar 

  • 18.

    Antonio-Nkondjio, C. et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit. Vectors 12, 501 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Pocquet, N. et al. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean. PLoS ONE 8, 77855 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Samantsidis, G.-R. et al. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B Biol. Sci. 287, 20200838 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin West Africa. Acta Trop. 101, 207–216 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Yadouléton, A. et al. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasit. Vectors 8, 17 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Xu, Q., Wang, H., Zhang, L. & Liu, N. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene 379, 62–67 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Martinez-Torres, D. et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pestic. Sci. 55, 1012–1020 (1999).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Djogbénou, L., Akogbéto, M. & Chandre, F. Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop. 107, 272–274 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 78 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Tmimi, F.-Z. et al. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit. Vectors 11, 51 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Kothera, L. et al. Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS ONE 14, (2019).

  • 31.

    Matowo, N. S. et al. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit. Vectors 12, 413 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Huang, Y. et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasit. Vectors 11, 6 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Cameroun fiche pays populationData.net 2020. https://www.populationdata.net/pays/cameroun/.

  • 35.

    Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé Cameroon. Parasite 27, 91 (2011).

    Google Scholar 

  • 36.

    Edwards, F. W. Mosquitoes of the Ethiopian Region. III.-Culicine adults and pupae. Mosquitoes Ethiop. Reg. III-Culicine Adults Pupae (1941).

  • 37.

    Jupp, P. G. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. (Ekogilde Publishers, 1996).

  • 38.

    Organization, W. H. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. (2016).

  • 39.

    Feyereisen, R. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag. Sci. 71, 793–800 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Smith, J. L. & Fonseca, D. M. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 70, 339–345 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Scott, J. G., Yoshimizu, M. H. & Kasai, S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic. Biochem. Physiol. 120, 68–76 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Bisset, J., Rodríguez, M. M. & Fernández, D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J. Med. Entomol. 43, 1185–1189 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Low, V. L. et al. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin. J. Med. Entomol. 50, 103–111 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Djogbénou, L., Noel, V. & Agnew, P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar. J. 9, 12 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Labbé, P. et al. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol. Biol. Evol. 24, 1056–1067 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Delannay, C. et al. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS ONE 13, e0199615 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Georghiou, G. P. & Pasteur, N. Organophosphate Resistance and Esterase Pattern in a Natural Population of the Southern House Mosquito from California. J. Econ. Entomol. 73, 489–492 (1980).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Xu, W. et al. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. Pestic. Biochem. Physiol. 142, 77–82 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Gong, Y., Li, T., Feng, Y. & Liu, N. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci. Rep. 7, 1–12 (2017).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Komagata, O., Kasai, S. & Tomita, T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40, 146–152 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Liu, N., Li, T., Reid, W. R., Yang, T. & Zhang, L. Multiple Cytochrome P450 Genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes culex quinquefasciatus. PLoS ONE 6, e23403 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Gordon, J. R. & Ottea, J. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 105, 971–978 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Mouches, C. et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. 87, 2574–2578 (1990).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Pasteur, N., Nancé, E. & Bons, N. Tissue localization of overproduced esterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 38, 791–801 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Achaleke, J., Martin, T., Ghogomu, R. T., Vaissayre, M. & Brévault, T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag. Sci. Former. Pestic. Sci. 65, 1147–1154 (2009).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Simma, E. A. et al. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST Manag. Sci. 75, 1808–1818 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Subra, R. Biology and control of Culex pipiens quinquefasciatus Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Calculation of external climate costs for food highlights inadequate pricing of animal products

    Encouraging solar energy adoption in rural India