in

High species richness of tachinid parasitoids (Diptera: Calyptratae) sampled with a Malaise trap in Baihua Mountain Reserve, Beijing, China

  • 1.

    Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).

    Google Scholar 

  • 2.

    Stork, N. E. How many species are there?. Biodivers. Conserv. 2, 215–232 (1993).

    Google Scholar 

  • 3.

    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopts. Bull. 36, 74–75 (1982).

    Google Scholar 

  • 4.

    Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 5.

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Linnaeus, C. Amoenitates Academicae, seu Dissertationes Variae Physicae, Medicae, Botanicae, Volume 2. (Laurentium Salvium, 1749).

  • 7.

    Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. (Laurentium Salvium, 1758).

  • 8.

    Metcalf, Z. P. How many insects are there in the world?. Entomol. News 51, 219–222 (1940).

    Google Scholar 

  • 9.

    Ødegaard, F. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J. Biogeogr. 27, 283–296 (2000).

    Google Scholar 

  • 10.

    Geiger, M. F. et al. The global Malaise trap program–how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).

  • 11.

    D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460 (2018).

    PubMed 

    Google Scholar 

  • 12.

    Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. Bmc. Biol. 17, 96 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Wu, Y. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).

    Google Scholar 

  • 14.

    Morelli, F. et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 23, 84–92 (2017).

    Google Scholar 

  • 15.

    White, E. P. Spatiotemporal scaling of species richness: Patterns, processes and implications. In Scaling biodiversity (eds Storch, D. et al.) 325–346 (Cambridge University Press, 2007).

    Google Scholar 

  • 16.

    Schwartz, M. D. Phenology: An Integrative Environmental Science. (Springer, 2013).

  • 17.

    Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).

    Google Scholar 

  • 18.

    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).

    Google Scholar 

  • 19.

    Le, C. M., Wilson, S. W. & Soulier-Perkins, A. Elevational gradient of Hemiptera (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. PeerJ 3, e978 (2015).

    Google Scholar 

  • 20.

    McCravy, K. W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170 (2018).

    PubMed Central 

    Google Scholar 

  • 21.

    Karlsson, D. et al. The Swedish Malaise trap project: A 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).

    PubMed 

    Google Scholar 

  • 23.

    Fraser, S. E. M., Dytham, C. & Mayhew, P. J. The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 1, 22–31 (2008).

    Google Scholar 

  • 24.

    Gaston, K. J., Gauld, I. D. & Hanson, P. The size and composition of the hymenopteran fauna of Costa Rica. J. Biogeogr. 23, 105–113 (1996).

    Google Scholar 

  • 25.

    Townes, H. K. Design of a Malaise trap. Proc. Entomol. Soc. Wash. 64, 253–262 (1962).

    Google Scholar 

  • 26.

    O’Hara, J. E. History of tachinid classification (Diptera, Tachinidae). ZooKeys 316, 1–34 (2013).

    Google Scholar 

  • 27.

    O’Hara, J. E., Henderson, S. J. & Wood, D. M. Preliminary Checklist of the Tachinidae of the World. Version 2.1. http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html (2020).

  • 28.

    Stireman, J. O., O’Hara, J. E. & Wood, D. M. Tachinidae: Evolution, behavior, and ecology. Annu. Rev. Entomol. 51, 525–555 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Cerretti, P. et al. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst. Entomol. 39, 335–353 (2014).

    Google Scholar 

  • 30.

    Stireman, J. O., Dyer, L. A. & Greeney, H. F. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Diver. 10, 367–384 (2017).

    Google Scholar 

  • 31.

    Belshaw, R. Tachinid (Diptera) assemblages in habitats of a secondary succession in southern Britain. Entomology 111, 151–161 (1992).

    Google Scholar 

  • 32.

    Inclán, D. J. & Stireman, J. O. Tachinid (Diptera: Tachinidae) Parasitoid diversity and temporal abundance at a single site in the northeastern United States. Ann. Entomol. Soc. Am. 104, 287–296 (2011).

    Google Scholar 

  • 33.

    Cerretti, P., Whitmore, D., Mason, F. & Taglianti, A. V. Survey on the spatio-temporal distribution of tachinid flies: Using Malaise traps (Diptera, Tachinidae). In Invertebrati diuna foresta della Pianura Padana, Bosco della Fontana, Secondo contributo (eds Cerretti, P. et al.) 229–256 (Springer, 2004).

  • 34.

    Stireman, J. O. Alpha and beta diversity of a tachinid parasitoid community. Ann. Entomol. Soc. Am. 101, 362–370 (2008).

    Google Scholar 

  • 35.

    Pei, W. Y. et al. Species diversity of Tachinidae in Baihuashan National Nature Reserve of Beijing, China. J. Environ. Entomol. 41, 1218–1225 (2019).

    Google Scholar 

  • 36.

    Zhao, Y. et al. Fauna resource investigation of Tachinidae (Diptera) from Mt. Huangyi, Eastern Liaoning, China. J. Environ. Entomol. 41, 1208–1217 (2019).

    Google Scholar 

  • 37.

    Zhang, Y. Z. et al. Fauna resource investigation of Tachinidae (Diptera) from the grasslands, Inner Mongolia of China. J. Environ. Entomol. 40, 1353–1363 (2018).

    Google Scholar 

  • 38.

    Zhang, C. T. et al. Preliminary investigation on Tachinidae (Diptera) of Hanma National Nature Reserve, Inner Mongolia, China. J. Environ. Entomol. 35, 257–264 (2017).

    CAS 

    Google Scholar 

  • 39.

    Liang, H. C. et al. Fauna resource of Tachinidae in Liaoning Hun River Source Nature Reserve of China. J. Environ. Entomol. 38, 1214–1223 (2016).

    Google Scholar 

  • 40.

    Zhang, C. T. et al. Faunistic investigation of Tachinidae in Liaoning Bailang Mountain National Nature Reserve of China. J. Environ. Entomol. 37, 726–734 (2015).

    Google Scholar 

  • 41.

    Zhang, D. et al. Study on Tachinidae fauna in Songshan National Nature Reserve of Beijing, China. Chin. J. Vector Biol. Control 22, 459–465 (2011).

    Google Scholar 

  • 42.

    Herting, B. & Dely-Draskovits, A. Family Tachinidae. In Catalogue of Palaearctic Diptera. Volume 13. Anthomyiidae–Tachinidae. (eds Soós, A. & Papp, L.) 118–458 (Hungarian Natural History Museum, 1993).

  • 43.

    O’Hara, J. E. & Henderson, S. J. World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 11.0. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Worldgenera.html (2020).

  • 44.

    Tschorsnig, H. P. & Richter, V. A. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance) (eds Papp, L. & Darvas, B) 691–827 (Higher Brachycera Science Herald Press, 1998).

  • 45.

    Cerretti, P., Tschorsnig, H. P., Lopresti, M. & Giovanni, F. D. MOSCHweb: A matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205, 5–18 (2012).

    Google Scholar 

  • 46.

    Andersen, S. Revision of European species of Phytomyptera Rondani (Diptera: Tachinidae). Insect Syst. Evol. 19, 43–80 (1988).

    Google Scholar 

  • 47.

    Andersen, S. The Siphonini (Diptera: Tachinidae) of Europe. Fauna Entomol. Scand. 33, 1–146 (1996).

    Google Scholar 

  • 48.

    Chao, C. M. et al. Tachinidae. In Flies of China Vol. 2 (eds Xue, W. Q. & Chao, C. M.) (Liaoning Science and Technology Press, 1998).

    Google Scholar 

  • 49.

    Chao, C. M. et al. Fauna Sinica. Insecta. Vol. 23. Diptera. Tachinidae (1) (Science Press, 2001).

    Google Scholar 

  • 50.

    O’Hara, J. E., Shima, H. & Zhang, C. T. Annotated catalogue of the Tachinidae (Insecta: Diptera) of China. Zootaxa 2190, 1–236 (2009).

    Google Scholar 

  • 51.

    Tachi, T. & Shima, H. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae). Tijdschr. voor Entomol. 145, 115–144 (2002).

    Google Scholar 

  • 52.

    Tschorsnig, H. P. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home.html (2017).

  • 53.

    Zhang, C. T., Shima, H. & Chen, X. L. A review of the genus Dexia Meigen in the Palearctic and Oriental Regions (Diptera: Tachinidae). Zootaxa 2705, 1–81 (2010).

    Google Scholar 

  • 54.

    Colwell, R. K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/ (2019).

  • 55.

    Oksanen, J. F. et al. Vegan: Community Ecology Package. R Package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 20 May 2018 (2017).

  • 56.

    Mielke, P. W. 34 Meteorological applications of permutation techniques based on distance functions. Handb. Stat. 4, 813–830 (1984).

    Google Scholar 

  • 57.

    Ge, Y. et al. Exotic spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China. Estuar. Coast. Shelf. Sci. 239, 106755 (2020).

    Google Scholar 

  • 58.

    Haq, F. et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 80, 232–241 (2017).

    Google Scholar 

  • 59.

    Oara, J. E., Zhang, C. T. & Shima, H. Catalogue of the Tachinidae (Insecta: Diptera) of China. In Catalogue of Life China: 2021 Annual Checklist, Volume 2 Animals, Insect (VI), Diptera (3) (eds Yang, D. et al.) 845–1170 (The Biodiversity Committee of Chinese Academy of Sciences, 2021).

  • 60.

    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eds Wiley, J. & Ltd, S.) 1–10 (Wiley, 2010).

    Google Scholar 

  • 61.

    Zhang, J. T., Xu, B. & Li, M. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 33, 170–178 (2013).

    ADS 

    Google Scholar 

  • 62.

    Huang, Y. et al. The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 14, 1027–1039 (2015).

    Google Scholar 

  • 63.

    Eldegard, K., Totland, Ø. & Moe, S. R. Edge effects on plant communities along power line clearings. J. Appl. Ecol. 52, 871–880 (2015).

    Google Scholar 

  • 64.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Google Scholar 

  • 65.

    Harper, K. A. et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005).

    Google Scholar 

  • 66.

    Laurance, W. F. et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007).

  • 67.

    Stireman, J. O. III., Cerretti, P., Whitmore, D., Hardersen, S. & Gianelle, D. Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conserv. Divers. 5, 346–357 (2012).

    Google Scholar 

  • 68.

    Burington, Z. L. et al. Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): A review of the evidence. Insect Conserv. Divers. 13, 419–431 (2020).

    Google Scholar 

  • 69.

    Campbell, J. W., Hanula, J. L. & Waldrop, T. A. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol. Conserv. 134, 393–404 (2007).

    Google Scholar 

  • 70.

    Alfred, D. J. et al. A study on five sampling methods of parasitic hymenopterans in rice ecosystem. Biol. Control. 32, 187–192 (2018).

    Google Scholar 

  • 71.

    Wells, W. & Decker, T. A comparison of three types of insect traps for collecting non-Formicidae Hymenoptera on the Island of Dominica. Southwest. Entomol. 31, 59–68 (2006).

    Google Scholar 

  • The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems

    Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula