in

High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR

  • 1.

    Pyron M. Characterizing communities. Nat Educ Knowl. 2010;3:39.

    Google Scholar 

  • 2.

    Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED The global ocean size-spectrum from bacteria to whales. bioRxiv 2021; 2021.04.03.438320.

  • 3.

    Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine Eco-systems biology. PLoS Biol. 2011;9:e1001177.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on Earth and in the ocean? PLoS Biol. 2011;9:e1001127.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1–12.

    Article 
    CAS 

    Google Scholar 

  • 6.

    Lejzerowicz F, Gooday AJ, Barrenechea Angeles I, Cordier, T, Morard, R, Apothéloz-Perret-Gentil L, et al. Eukaryotic biodiversity and spatial patterns in the Clarion-Clipperton zone and other abyssal regions: insights from sediment DNA and RNA metabarcoding. Front Mar Sci. 2021;8:1–23.

    Article 

    Google Scholar 

  • 7.

    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:1–8.

    Article 

    Google Scholar 

  • 8.

    Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Environ. 2018;637–638:1295–310.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 9.

    Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17:e00547.

    Article 

    Google Scholar 

  • 10.

    Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol Ecol. 2019;28:1857–62.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. How quantitative is metabarcoding: A meta-analytical approach. Mol Ecol. 2019;28:420–30.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 14.

    Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol. 2008;74:7174–82.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Gong J, Dong J, Liu X, Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164:369–79.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 16.

    Rodríguez-Martínez R, Labrenz M, del Campo J, Forn I, Jürgens K, Massana R. Distribution of the uncultured protist MAST-4 in the Indian Ocean, Drake Passage and Mediterranean Sea assessed by real-time quantitative PCR. Environ Microbiol. 2009;11:397–408.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 17.

    Zhu F, Massana R, Not F, Marie D, Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005;52:79–92.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 18.

    Wang Y, Jiang Y, Liu Y, Li Y, Katz LA, Gao F, et al. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, ciliophora): Implications for phylogenetic, environmental, and ecological research. Microorganisms. 2020;8:316.

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F. Ciliates and the rare biosphere: A review. J Eukaryot Microbiol. 2014;61:404–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:1–5.

    Article 

    Google Scholar 

  • 21.

    Kucera M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev Mar Geol. 2007;1:213–62.

    Google Scholar 

  • 22.

    Morard R, Escarguel G, Weiner AK, André A, Douady CJ, Wade CM, et al. Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera. Syst Biol. 2016;65:925–40.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Darling KF, Wade CM. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008;67:216–38.

    Article 

    Google Scholar 

  • 24.

    André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, de Vargas C, et al. SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS ONE. 2014;9:e104641.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Morard R, Garet-Delmas MJ, Mahé F, Romac S, Poulain J, Kucera M, et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep. 2018;8:1–10. 2539

    Article 
    CAS 

    Google Scholar 

  • 26.

    Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS One. 2019;14:e0213936.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci U S A. 2011;108:13177–82.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Lejzerowicz F, Esling P, Pawlowski J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing. Deep Sea Res Part II Top Stud Oceanogr. 2014;108:17–26.

    Article 
    CAS 

    Google Scholar 

  • 29.

    Shi J, Lei Y, Li Q, Lyu M, Li T. Molecular diversity and spatial distribution of benthic foraminifera of the seamounts and adjacent abyssal plains in the tropical Western Pacific Ocean. Mar Micropaleontol. 2020;156:101850.

    Article 

    Google Scholar 

  • 30.

    Li Q, Lei Y, Morard R, Li T, Wang B. Diversity hotspot and unique community structure of foraminifera in the world’s deepest marine blue hole—Sansha Yongle Blue Hole. Sci Rep. 2020;10:10257.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Cordier T, Barrenechea I, Lejzerowicz F, Reo E, Pawlowski J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog Oceanogr. 2019;178:102175.

    Article 

    Google Scholar 

  • 32.

    Weber AA-T, Pawlowski J. Can Abundance of Protists Be Inferred from Sequence Data: A Case Study of Foraminifera. PLoS One. 2013;8:e56739.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Jonkers L, Meilland J, Rillo MC, de Garidel-Thoron T, Kitchener JA, Kucera M. Linking zooplankton time series to the fossil record. ICES J Mar Sci. 2021:1–8.

  • 34.

    Weiner AKM, Morard R, Weinkauf MFG, Darling KF, André A, Quillévéré F, et al. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution. Front Mar Sci. 2016;3:1–15.

    Article 

    Google Scholar 

  • 35.

    Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 36.

    Barrenechea Angeles I, Lejzerowicz F, Cordier T, Scheplitz J, Kucera M, Ariztegui D, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. Sci Rep. 2020;10:1–12.

    Article 
    CAS 

    Google Scholar 

  • 37.

    Morard R, Darling KF, Mahé F, Audic S, Ujiié Y, Weiner AK, et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol Ecol Resour. 2015;15:1472–85.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 38.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.

  • 39.

    Wickham H ggplot2: Elegant graphics for data analysis. 2009. Springer-Verlag, New York.

  • 40.

    Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.

    Article 

    Google Scholar 

  • 41.

    Debode F, Marien A, Janssen É, Bragard C, Berben G. The influence of amplicon length on real-time PCR results. Biotechnol Agron Soc Environ. 2017;21:3–11.

    CAS 

    Google Scholar 

  • 42.

    Bé AWH, Lott L. Shell growth and structure of planktonic foraminifera. Science. 1964;145:2–3.

    Article 

    Google Scholar 

  • 43.

    Caromel AGM, Schmidt DN, Fletcher I, Rayfield EJ Morphological change during the ontogeny of the planktic foraminifera. J Micropalaeontology. 2015; 2014–017.

  • 44.

    Darling KF, Kucera M, Kroon D, Wade CM. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography. 2006;21:PA2011–n/a.

    Article 

    Google Scholar 

  • 45.

    Parfrey LW, Lahr DJG, Katz LA. The dynamic nature of eukaryotic genomes. Mol Biol Evol. 2008;25:787–94.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 46.

    Parfrey LW, Katz LA. Dynamic genomes of eukaryotes and the maintenance of genomic integrity. Microbe. 2010;5:156–63.

    Google Scholar 

  • 47.

    Parfrey LW, Katz LA. Genome dynamics are influenced by food source in Allogromia laticollaris strain CSH (Foraminifera). Genome Biol Evol. 2010;2:678–85.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J Plankton Res. 2010;32:119–37.

    Article 
    CAS 

    Google Scholar 

  • 49.

    Goldstein ST. Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foraminifer Res. 1997;27:319–28.

    Article 

    Google Scholar 

  • 50.

    Davis CV, Livsey CM, Palmer HM, Hull PM, Thomas E, Hill TM, et al. Extensive morphological variability in asexually produced planktic foraminifera. Sci Adv. 2020;6:1–8.

    Article 
    CAS 

    Google Scholar 

  • 51.

    Takagi H, Kurasawa A, Kimoto K. Observation of asexual reproduction with symbiont transmission in planktonic foraminifera. J Plankton Res. 2020;42:403–10.

    Article 
    CAS 

    Google Scholar 

  • 52.

    Lessa D, Morard R, Jonkers L, Venancio IM, Reuter R, Baumeister A, et al. Distribution of planktonic foraminifera in the subtropical South Atlantic: Depth hierarchy of controlling factors. Biogeosciences. 2020;17:4313–42.

    Article 
    CAS 

    Google Scholar 

  • 53.

    Kucera M, Michael S, Raphaël M, Lukas J, Christiane S, Philipp M, et al. Scales of Population Dynamics, Ecology and Diversity of Planktonic Foraminifera and their Relationship to Particle Flux in the Eastern Tropical Atlantic: Cruise No. M140, 11.8.2017-5.9.2017, Mindelo (Cabo Verde)-Las Palmas (Spain) – FORAMFLUX. 2019. Bonn.

  • 54.

    Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem Cycles. 2002;16:3-1–3–21.

    Article 
    CAS 

    Google Scholar 

  • 55.

    Meilland J, Schiebel R, Lo Monaco C, Sanchez S, Howa H. Abundances and test weights of living planktic foraminifers across the Southwest Indian Ocean: implications for carbon fluxes. Deep Sea Res Part I Oceanogr Res Pap. 2018;131:27–40.

    Article 
    CAS 

    Google Scholar 

  • 56.

    Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun. 2021;12:4160.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Central America drying

    Scientists say Australian plan to cull up to 10,000 wild horses doesn’t go far enough