in

Historical contingency impacts on community assembly and ecosystem function in chemosynthetic marine ecosystems

  • 1.

    Madsen, E. L. Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nat. Rev. Micro. 3, 439 (2005).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Galand, P. E., Pereira, O., Hochart, C., Auguet, J. C. & Debroas, D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 12, 2470 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Galand, P. E., Salter, I. & Kalenitchenko, D. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters. Mol. Ecol. 24, 5785–5795 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Chase, J. M. Community assembly: When should history matter?. Oecologia 136, 489–498 (2003).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436–11440 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat. Rev. Micro. 10, 497 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Fukami, T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article 

    Google Scholar 

  • 12.

    Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Micro. 4, 102 (2006).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Hawkes, C. V. & Keitt, T. H. Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–625 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Bouskill, N. J. et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 7, 384 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Ge, Y. et al. Differences in soil bacterial diversity: Driven by contemporary disturbances or historical contingencies?. ISME J. 2, 254 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Rousk, J., Smith, A. R. & Jones, D. L. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. Glob. Change Biol. 19, 3872–3884 (2013).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Langenheder, S., Lindström, E. S. & Tranvik, L. J. Structure and function of bacterial communities emerging from different sources under identical conditions. Appl. Environ. Microbiol. 72, 212–220 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Langenheder, S., Lindström, E. S. & Tranvik, L. J. Weak coupling between community composition and functioning of aquatic bacteria. Limnol. Oceanogr. 50, 957–967 (2005).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Vass, M. & Langenheder, S. The legacy of the past: Effects of historical processes on microbial metacommunities. Aquat. Microb. Ecol. 79, 13–19 (2017).

    Article 

    Google Scholar 

  • 20.

    Svoboda, P., Lindström, E. S., Osman, O. A. & Langenheder, S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 12, 644 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Rummens, K., De Meester, L. & Souffreau, C. Inoculation history affects community composition in experimental freshwater bacterioplankton communities. Environ. Microbiol. 20, 1120–1133 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Andersson, M. G., Berga, M., Lindström, E. S. & Langenheder, S. The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology 95, 1134–1140 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Vyverman, W. et al. Historical processes constrain patterns in global diatom diversity. Ecology 88, 1924–1931 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Sefbom, J., Sassenhagen, I., Rengefors, K. & Godhe, A. Priority effects in a planktonic bloom-forming marine diatom. Biol. Lett. 11, 20150184 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Kalenitchenko, D. et al. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water. ISME J. 10, 2246–2258 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Kalenitchenko, D., Le Bris, N., Peru, E. & Galand, P. E. Ultrarare marine microbes contribute to key sulphur-related ecosystem functions. Mol. Ecol. 27, 1494–1504 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Ghiglione, J. F. et al. Role of environmental factors for the vertical distribution (0–1000 m) of marine bacterial communities in the NW Mediterranean Sea. Biogeosciences 5, 1751–1764 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Ghiglione, J.-F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl. Acad. Sci. USA 109, 17633–17638 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068-1083.e1021 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Kalenitchenko, D. et al. The early conversion of deep-sea wood falls into chemosynthetic hotspots revealed by in situ monitoring. Sci. Rep. 8, 907. https://doi.org/10.1038/s41598-017-17463-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Kalenitchenko, D. et al. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater. ISME J. 9, 2657–2670 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Kalenitchenko, D. et al. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME J. 12, 367–379 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Galand, P., Salter, I. & Kalenitchenko, D. Microbial productivity is associated with phylogenetic distance in surface marine waters. Mol. Ecol. 24, 5785–5795 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. https://doi.org/10.1093/nar/gkm864 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Cox, M. P., Peterson, D. A. & Biggs, P. J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 11, 485. https://doi.org/10.1186/1471-2105-11-485 (2010).

    Article 

    Google Scholar 

  • 37.

    Rho, M., Tang, H. & Ye, Y. FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq747 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Wilke, A. et al. The M5nr: A novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinform. 13, 141. https://doi.org/10.1186/1471-2105-13-141 (2012).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat Précéd 1–1 https://doi.org/10.1038/npre.2010.4282.1 (2010).

    Article 

    Google Scholar 

  • 41.

    Meyer, F. et al. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9, 386. https://doi.org/10.1186/1471-2105-9-386 (2008).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Dixon, P. VEGAN, a package of R functions for community ecology. J Veg Sci 14, 927–930 (2003).

    Article 

    Google Scholar 

  • 43.

    Blanchette, R. A., Nilsson, T., Daniel, G. & Abad, A. Biological Degradation of Wood. in vol. 225, 141–174 (American Chemical Society, 1989).

    Google Scholar 

  • 44.

    Fagervold, S. K. et al. Microbial communities associated with the degradation of oak wood in the Blanes submarine canyon and its adjacent open slope (NW Mediterranean). Prog. Oceanogr. 118, 137–143. https://doi.org/10.1016/j.pocean.2013.07.012 (2013).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Sommer, U. Convergent succession of phytoplankton in microcosms with different inoculum species composition. Oecologia 87, 171–179 (1991).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Weiher, E. & Keddy, P. A. The assembly of experimental wetland plant communities. Oikos 73, 323–335 (1995).

    Article 

    Google Scholar 

  • 47.

    Wilson, J. B. et al. A test of community reassembly using the exotic communities of New Zealand roadsides in comparison to British roadsides. J. Ecol. 88, 757–764 (2000).

    Article 

    Google Scholar 

  • 48.

    Kodric-Brown, A. & Brown, J. H. Highly structured fish communities in Australian desert springs. Ecology 74, 1847–1855 (1993).

    Article 

    Google Scholar 

  • 49.

    Grover, J. P. & Lawton, J. H. Experimental studies on community convergence and alternative stable states: Comments on a paper by Drake et al. J. Anim. Ecol. 63, 484–487 (1994).

    Article 

    Google Scholar 

  • 50.

    Lawler, S. P. Direct and indirect effects in microcosm communities of protists. Oecologia 93, 184–190 (1993).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Chase, J. M. Experimental evidence for alternative stable equilibria in a benthic pond food web. Ecol. Lett. 6, 733–741 (2003).

    Article 

    Google Scholar 

  • 52.

    Petraitis, P. S. & Latham, R. E. The importance of scale in testing the origins of alternative community states. Ecology 80, 429–442 (1999).

    Article 

    Google Scholar 

  • 53.

    Hiscox, J. et al. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Dhami, M. K., Hartwig, T. & Fukami, T. Genetic basis of priority effects: Insights from nectar yeast. Proc. R. Soc. Lond. B. 283, 20161455 (2016).

    Google Scholar 

  • 56.

    Fukami, T. & Morin, P. J. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424, 423 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Khelaifia, S. et al. Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int. J. Syst. Evol. Micr. 61, 2706–2711 (2011).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Sievert, S. M., Wieringa, E. B., Wirsen, C. O. & Taylor, C. D. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271–276 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Pathfinder satellite paves way for constellation of tropical-storm observers

    Designing exploratory robots that collect data for marine scientists