in

Historical warming consistently decreased size, dispersal and speciation rate of fish

  • 1.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 2.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article 

    Google Scholar 

  • 3.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    Article 

    Google Scholar 

  • 4.

    McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).

    Article 

    Google Scholar 

  • 5.

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article 

    Google Scholar 

  • 6.

    Amigo, I. The Amazon’s fragile future. Nature 578, 505–507 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Change 10, 249–253 (2020).

    Article 

    Google Scholar 

  • 8.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 

    Google Scholar 

  • 9.

    Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).

    Article 

    Google Scholar 

  • 10.

    Chen, I., Hill, J. K., Ohlemûller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article 

    Google Scholar 

  • 12.

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).

    Article 

    Google Scholar 

  • 13.

    Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).

    Article 

    Google Scholar 

  • 14.

    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Article 

    Google Scholar 

  • 15.

    Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).

    Article 

    Google Scholar 

  • 16.

    Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front. Ecol. Evol. 7, 271 (2019).

    Article 

    Google Scholar 

  • 17.

    Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • 20.

    Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).

    Article 

    Google Scholar 

  • 21.

    Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. Biol. Sci. 287, 20192615 (2020).

    Google Scholar 

  • 23.

    Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B 285, 20172214 (2018).

    Article 

    Google Scholar 

  • 24.

    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    Article 

    Google Scholar 

  • 28.

    Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).

    Article 

    Google Scholar 

  • 29.

    Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic evidence for an indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485 (2013).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302–314 (2018).

    Article 

    Google Scholar 

  • 32.

    O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).

    Article 

    Google Scholar 

  • 33.

    Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).

    Article 

    Google Scholar 

  • 34.

    Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change across scales in ecology. Biol. Rev. 95, 1798–1811 (2020).

    Article 

    Google Scholar 

  • 35.

    Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Gaston, K. J. Species-range size distributions: products of speciation, extinction and transformation. Philos. Trans. R. Soc. B 353, 219–230 (1998).

    Article 

    Google Scholar 

  • 37.

    Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).

    Article 

    Google Scholar 

  • 38.

    Angilletta, M. J. & Dunham, A. E. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).

    Article 

    Google Scholar 

  • 39.

    Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).

    Article 

    Google Scholar 

  • 40.

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Whitehead, P. J. P. FAO species catalogue: vol. 7 Clupeoid fishes of the world. FAO Fish. Synop. 7, 303 (1985).

    Google Scholar 

  • 43.

    Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).

    Article 

    Google Scholar 

  • 44.

    Önsoy, B., Tarkan, A. S., Filiz, H. & Bilge, G. Determination of the best length measurement of fish. North. West. J. Zool. 7, 178–180 (2011).

    Google Scholar 

  • 45.

    Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol. 218, 128–141 (1999).

    Article 

    Google Scholar 

  • 46.

    Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13, 2052–2064 (2007).

    Article 

    Google Scholar 

  • 48.

    Avaria-Llautureo, J. et al. Data for: Historical Warming Consistently Decreased Size, Dispersal and Speciation Rate of Fish (Dryad, 2021); https://doi.org/10.5061/dryad.cfxpnvx5g

  • 49.

    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

    Article 

    Google Scholar 

  • 50.

    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Kocsis, Á. T. & Raja, N. B. chronosphere (Zenodo, 2020); https://doi.org/10.5281/zenodo.3530703

  • 52.

    Raftery, A. E. in Markov Chain Monte Carlo in Practice (eds Gilks, W. et al.) 163–187 (Chapman & Hall, 1996).

  • 53.

    Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10 https://CRAN.R-project.org/package=geosphere (2019).

  • 54.

    Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).

    Article 

    Google Scholar 

  • 55.

    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).

    Article 

    Google Scholar 

  • 56.

    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74, 1620–1639 (2020).

    Article 

    Google Scholar 

  • 58.

    Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997).

    Article 

    Google Scholar 

  • 59.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 60.

    Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy