in

Horizontal gene transfer and adaptive evolution in bacteria

  • 1.

    Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).

    Google Scholar 

  • 2.

    Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). Using metagenomic samples form the human gut microbiome, the authors infer lineage structure from within-host polymorphisms in more than 40 species to show adaptation on short timescales can be seeded by HGT.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using the mouse microbiome as a study system, the authors show that rapid, phage-mediated HGT can transfer beneficial genes — already present in a resident strain — to an invading strain.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Smith, J. M., Smith, N. H., O’Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Dykhuizen, D. E. & Green, L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268 (1991).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Feil, E. J. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Suerbaum, S. et al. Free recombination within Helicobacter pylori. PNAS 95, 12619–12624 (1998).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    PubMed 

    Google Scholar 

  • 9.

    Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Bradley, P. H., Nayfach, S. & Pollard, K. S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biol. 14, e1006242 (2018). The authors use phylogenetic linear regression to control for important confounders and identify genes potentially involved in adaptation to the human gut.

    Google Scholar 

  • 11.

    Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Mcinerney, J. O., Mcnally, A. & Connell, M. J. O. Why prokaryotes have pangenomes. Nat. Publ. Gr. 2, 1–5 (2017).

    Google Scholar 

  • 13.

    Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1005860 (2017).

    Google Scholar 

  • 14.

    Vos, M. & Eyre-walker, A. Are pangenomes adaptive or not? Nat. Microbiol. https://doi.org/10.1038/s41564-017-0067-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).

    PubMed 

    Google Scholar 

  • 16.

    Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).

    PubMed 

    Google Scholar 

  • 17.

    Pimentel, Z. T. & Zhang, Y. Evolution of the natural transformation protein, ComEC, in Bacteria. Front. Microbiol. 9, 1–10 (2018).

    Google Scholar 

  • 18.

    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).

    Google Scholar 

  • 19.

    Camarillo-Guerrero, L. F. et al. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7, e1002222 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).

    PubMed 

    Google Scholar 

  • 22.

    Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 96, 1–12 (2020).

    Google Scholar 

  • 23.

    Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Hasegawa, H., Suzuki, E. & Maeda, S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front. Microbiol. 9, 1–6 (2018).

    Google Scholar 

  • 25.

    Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).

    PubMed 

    Google Scholar 

  • 26.

    Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003458 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 1–15 (2006).

    Google Scholar 

  • 29.

    Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0311-5 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).

    PubMed 

    Google Scholar 

  • 31.

    Vulić, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Majewski, J. et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).

    PubMed 

    Google Scholar 

  • 34.

    Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21, 157–178 (1997).

    PubMed 

    Google Scholar 

  • 35.

    Durrant, M. G., Li, M. M., Siranosian, B. A., Montgomery, S. B. & Bhatt, A. S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27, 140–153.e9 (2020).

    PubMed 

    Google Scholar 

  • 36.

    Rajeev, L., Malanowska, K. & Gardner, J. F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73, 300–309 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 1–10 (2017).

    Google Scholar 

  • 39.

    Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, 1–17 (2018).

    Google Scholar 

  • 40.

    Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019). The authors create a metric of recent gene flow to define ecological populations and discover genes that have experienced positive selection across populations.

    PubMed 

    Google Scholar 

  • 41.

    Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, 1–42 (2016). A model of transformation with known bias towards the acquisition of shorter alleles suggests HGT may effectively purge bacterial genomes of parasitic MGEs.

    Google Scholar 

  • 42.

    Apagyi, K. J., Fraser, C. & Croucher, N. J. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol. Biol. Evol. 35, 575–581 (2018).

    PubMed 

    Google Scholar 

  • 43.

    Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).

    PubMed 

    Google Scholar 

  • 44.

    Kuo, C.-H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    PubMed 

    Google Scholar 

  • 47.

    Campbell, A. Prophage insertion sites. Res. Microbiol. 154, 277–282 (2003).

    PubMed 

    Google Scholar 

  • 48.

    Chu, N. D. et al. A mobile element in mutS drives hypermutation in a marine Vibrio. mBio 8, 1–13 (2017).

    Google Scholar 

  • 49.

    Bobay, L. M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).

    PubMed 

    Google Scholar 

  • 50.

    Lee, H., Doak, T. G., Popodi, E., Foster, P. L. & Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 44, 7109–7119 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).

    PubMed 

    Google Scholar 

  • 52.

    Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004).

    PubMed 

    Google Scholar 

  • 53.

    Hendry, T. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio https://doi.org/10.1128/mBio.01033-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio https://doi.org/10.1128/mBio.02430-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Vos, M. et al. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).

    PubMed 

    Google Scholar 

  • 56.

    Cohen, E., Kessler, D. A. & Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett. 94, 1–4 (2005).

    Google Scholar 

  • 57.

    Levin, B. R. & Cornejo, O. E. The population and evolutionary dynamics of homologous gene recombination in bacteria. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000601 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Arnold, B. J. et al. Weak epistasis may drive adaptation in recombining bacteria. Genetics 208, 1247–1260 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Moradigaravand, D. & Engelstädter, J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput. Biol. 8, 35–37 (2012).

    Google Scholar 

  • 60.

    Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, 1899–1905 (2007).

    Google Scholar 

  • 61.

    Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. Metab. Eng. 14, 487–495 (2012).

    PubMed 

    Google Scholar 

  • 62.

    Chu, H. Y., Sprouffske, K. & Wagner, A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30, 1692–1711 (2017).

    PubMed 

    Google Scholar 

  • 63.

    Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz225 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Yahara, K. et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33, 456–471 (2016).

    PubMed 

    Google Scholar 

  • 65.

    Engelstädter, J. & Moradigaravand, D. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proc. R. Soc. B Biol. Sci. 281, 20132609 (2014).

    Google Scholar 

  • 66.

    Cohan, F. M. Periodic selection and ecological diversity in bacteria. Selective Sweep https://doi.org/10.1007/0-387-27651-3_7 (2007).

    Article 

    Google Scholar 

  • 67.

    Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).

    PubMed 

    Google Scholar 

  • 68.

    Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Rosen, M., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1024 (2015).

    PubMed 

    Google Scholar 

  • 70.

    Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Porter, S. S., Chang, P. L., Conow, C. A., Dunham, J. P. & Friesen, M. L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 11, 248–262 (2017).

    PubMed 

    Google Scholar 

  • 72.

    Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA 117, 26868–26875 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).

    PubMed 

    Google Scholar 

  • 75.

    De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).

    PubMed 

    Google Scholar 

  • 76.

    Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Takeuchi, N., Cordero, O. X., Koonin, E. V. & Kaneko, K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 13, 1–11 (2015). The authors show that in the presence of NFDS, genes or mutations that are unconditionally beneficial can spread through populations only via HGT, giving rise to gene-specific sweeps.

    Google Scholar 

  • 78.

    Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 2017, 1950–1960 (2018).

    Google Scholar 

  • 79.

    Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).

    PubMed 

    Google Scholar 

  • 80.

    Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load allows for high mutation rate variation in gut commensal bacteria. PLoS Biol. https://doi.org/10.1101/568709 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Cohan, F. M. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol. Spectr. https://doi.org/10.1128/9781555819743.ch18 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 84.

    Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Cohan, F. M. The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143, 965–986 (1994).

    Google Scholar 

  • 86.

    Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2013.08.003 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Cui, Y. et al. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).

    PubMed 

    Google Scholar 

  • 89.

    Skwark, M. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006508 (2016).

    Article 

    Google Scholar 

  • 90.

    Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112–e112 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Puranen, S. et al. SuperDCA for genome-wide epistasis analysis. Microb. Genomics 4, e000184 (2018).

    Google Scholar 

  • 92.

    Whelan, F. J., Rusilowicz, M. & McInerney, J. O. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6, e000338 (2020).

    Google Scholar 

  • 93.

    Slomka, S. et al. Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects. Genetics 216, 543–558 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, 1–30 (2018).

    Google Scholar 

  • 95.

    Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 (2014).

    PubMed 

    Google Scholar 

  • 96.

    Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).

    PubMed 

    Google Scholar 

  • 97.

    Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Hughes, A. L. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics 169, 533–538 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Van Passel, M. W. J., Marri, P. R. & Ochman, H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4, e1000059 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. 3, e130 (2005).

  • 103.

    Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. https://doi.org/10.1038/nrg2526 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 106.

    Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, 373–386 (2007).

    Google Scholar 

  • 107.

    Domingo-Sananes, M. R. & McInerney, J. O. Selection-based model of prokaryote pangenomes. bioRxiv https://doi.org/10.1101/782573 (2019).

    Article 

    Google Scholar 

  • 108.

    Azarian, T. et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 18, e3000878 (2020). The authors provide evidence that NFDS is a pervasive evolutionary force that shapes the accessory genome of S. pneumoniae.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Bobay, L. M., Touchon, M. & Rocha, E. P. C. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014). Although prophages can be considered parasitic, the authors show evidence of purifying selection within prophage genes, suggesting that they serve a beneficial purpose within their bacterial hosts.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Med. 12, 1–19 (2014).

    Google Scholar 

  • 111.

    Lynch, M. Streamlining and simplification of microbial genome architecture. Annu.Rev.Microbiol. 60, 327–349 (2006).

    PubMed 

    Google Scholar 

  • 112.

    Bobay, L. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 15 (2018).

    Google Scholar 

  • 113.

    Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Evans, T. G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 218, 1925–1935 (2015).

    PubMed 

    Google Scholar 

  • 115.

    Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).

    PubMed 

    Google Scholar 

  • 116.

    Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80-.) 350, aac5992 (2015).

    Google Scholar 

  • 117.

    Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).

    PubMed 

    Google Scholar 

  • 119.

    Ansari, A. & Didelot, X. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196, 253–265 (2014).

    PubMed 

    Google Scholar 

  • 120.

    Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199–204 (2019). The authors develop a fast and clever method that uses linkage information to estimate recombination rates and the diversity of the gene pool that has contributed alleles to the sample via HGT.

    PubMed 

    Google Scholar 

  • 121.

    Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, 1–12 (2012).

    Google Scholar 

  • 122.

    Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, 1–18 (2015).

    Google Scholar 

  • 123.

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. https://doi.org/10.1371/journal.pcbi.1004041 (2015).

  • 124.

    Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K. & Falush, D. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31, 1593–1605 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).

    PubMed 

    Google Scholar 

  • 127.

    Daubin, V. & Szollosi, G. Horizontal gene transfer and the tree of life. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1007/978-94-007-2941-4_37 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20, 1685–1698 (2019).

    PubMed 

    Google Scholar 

  • 129.

    Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).

    PubMed 

    Google Scholar 

  • 130.

    Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).

  • 132.

    Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002129 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, 1–21 (2017).

    Google Scholar 

  • 134.

    Dillon, M., Thakur, S., Almeida, R. & Guttman, D. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. https://doi.org/10.1101/227413 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan