in

Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest

  • 1.

    Figueiredo, M. Human urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Front Cell Infect. Microbiol. 9, 1–6. https://doi.org/10.3389/fcimb.2019.00259 (2019).

    Article 

    Google Scholar 

  • 2.

    Reeves, L. E. et al. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida. PLoS ONE 13, 1–15. https://doi.org/10.1371/journal.pone.0190633 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Reeves, L. E., Gillett-Kaufman, J. L., Kawahara, A. Y. & Kaufman, E. Barcoding blood meals : New vertebrate- specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meal. PLoS Negl. Trop. Dis. 12, 1–18. https://doi.org/10.1371/journal.pntd.0006767 (2018).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Makanga, B. et al. “Show me which parasites you carry and I will tell you what you eat”, or how to infer the trophic behavior of hematophagous arthropods feeding on wildlife. Ecol. Evol. 7, 7578–7584. https://doi.org/10.1002/ece3.2769 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Burkett-Cadena, N. D., Bingham, A. M., Porterfield, C. & Unnasch, T. R. Innate preference or opportunism : Mosquitoes feeding on birds of prey at the Southeastern raptor center. Vector Ecol. 39, 21–31. https://doi.org/10.1111/j.1948-7134.2014.12066.x (2014).

    Article 

    Google Scholar 

  • 6.

    Mendenhall, I. H., Tello, S. A., Neira, L. A., Castillo, L. F. & Ocampo, C. B. Host preference of the Arbovirus vector Culex erraticus (Diptera: host preference of the arbovirus vector Culex erraticus ( Diptera : Culicidae ) at Sonso Lake, Cauca valley department, Colombia. J. Med. Entomol. 49, 1092–1102. https://doi.org/10.1603/me11260 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Harrington, L. C. et al. Why do female Aedes aegypti (Diptera: Culicidae ) feed preferentially and frequently on human blood?. J. Med. Entomol. 38, 411–422. https://doi.org/10.1603/0022-2585-38.3.411 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Catenacci, L. S. et al. Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Bahia, Brazil. EcoHealth 15, 777–791. https://doi.org/10.1007/s10393-018-1361-2 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Infect. Dis. 28, 191. https://doi.org/10.1038/s41426-018-0194-y (2018).

    Article 

    Google Scholar 

  • 10.

    Borremans, B. et al. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Phil. Trans. R. Soc. B. 374, 20180344. https://doi.org/10.1098/rstb.2018.0344 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends in Microbiol. 21, 360–363. https://doi.org/10.1016/j.tim.2013.03.003 (2013).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Caron, A., Cappelle, J., Cumming, G. S., Garine-wichatitsky, M. D. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11. https://doi.org/10.1186/s13567-015-0217-9 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Komar, N. & Clark, G. G. West Nile virus activity in Latin America and the Caribbean. Rev. Panam. Salud Publica. 19, 112–117. https://doi.org/10.1590/S1020-49892006000200006 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Huba, Z. & Weissenbo, H. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280. https://doi.org/10.1016/j.vetmic.2009.08.025 (2010).

    Article 

    Google Scholar 

  • 15.

    Barrera, R., Navarro, J. & Liria, J. Contrasting sylvatic foci of Venezuelan equine encephalitis virus in Northern South America. Am. J. Trop. Med. Hyg. 67, 324–34. https://doi.org/10.4269/ajtmh.2002.67.324 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Hoyos-López, R., Soto, S. U., Rúa-Uribe, G. & Gallego-Gómez, J. C. Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem. Inst. Oswaldo Cruz. 110, 719–725. https://doi.org/10.1590/0074-02760280040110 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Guzmán, C., Calderón, A., Martinez, C., Oviedo, M. & Mattar, S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop. 191, 178–184. https://doi.org/10.1016/j.actatropica.2018.12.016 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Torres-Gutierrez, C. et al. Mitochondrial COI gene as a tool in the taxonomy of mosquitoes Culex subgenus melanoconion. Acta Trop. 164, 137–149. https://doi.org/10.1016/j.actatropica.2016.09.007 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Torres-Gutierrez, C. & Sallum, M. A. M. Catalog of the subgenus melanoconion of Culex (Diptera: Culicidae) for South America. Zootaxa. 4028, 1–50. https://doi.org/10.11646/zootaxa.4028.1.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Torres-Gutierrez, C., Oliveira, T. M. P., Bergo, E. S. & Sallum, M. A. M. Molecular phylogeny of Culex subgenus Melanoconion (Diptera: Culicidae) based on nuclear and mitochondrial protein-coding genes. R Soc Open Sci. 5, 171900. https://doi.org/10.1098/rsos.171900 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitol. 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Laurito, M., De Oliveira, T. M. P., Almirón, W. R., Anice, M. & Sallum, M. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Mem. Inst. Oswaldo Cruz. 108, 110–122. https://doi.org/10.1590/0074-0276130457 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    IUCN 2020. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2020).

  • 24.

    Roque, A. L. R. & Jansen, A. M. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl. 3, 251–262 (2014).

    Article 

    Google Scholar 

  • 25.

    Palermo, P. M. et al. Identification of blood meals from potential Arbovirus mosquito vectors in the peruvian amazon basin. Am. J. Trop. Med. Hyg. 95, 1026–1030. https://doi.org/10.4269/ajtmh.16-0167 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Silva, S., Alencar, J., Costa, J. M., Seixas-lorosa, E. & Guimarães, A. É. Feeding patterns of mosquitoes (Diptera: Culicidae) in six Brazilian environmental preservation areas. J. Vector Ecol. 37, 342–350. https://doi.org/10.1111/j.1948-7134.2012.00237 (2012).

    Article 

    Google Scholar 

  • 27.

    Edman, J. D. Host-feeding patterns of florida mosquitoes I. Aedes, anopheles, coquillettidia, Mansonia and Psorophora. J. Med. Entomol. 30, 687–695. https://doi.org/10.1093/jmedent/8.6.687 (1971).

    Article 

    Google Scholar 

  • 28.

    Gabriel, Z. et al. Culex nigripalpus Theobald (Diptera, Culicidae) feeding habit at the Parque Ecológico. Rev. Bras. Entomol. 52, 4. https://doi.org/10.1590/S0085-56262008000400019 (2008).

    Article 

    Google Scholar 

  • 29.

    Zimmerman, R. H., Galardo, A. K., Lounibos, L, P., Arruda, M. & Wirtz, R. Bloodmeal Hosts of Anopheles Species (Diptera: Culicidae) in a Malaria-Endemic Area of the Brazilian Amazon. J. Med. Entomol. 43, 947–56. https://doi.org/10.1093/jmedent/43.5.947 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Mitchell, C. J. et al. Hostfeeding patterns of Argentine mosquitoes (Diptera: Culicidae) collected during and after an epizootic of western equine encephalitis. J. Med. Entomol. 24, 260–267. https://doi.org/10.1093/jmedent/24.2.260 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Stein, M., Zalazar, L., Willener, J. A., Almeida, F. L. & Almirón, W. R. Culicidae (Diptera ) selection of humans, chickens and rabbits in three different environments in the province of Chaco, Argentina. Mem. Inst. Oswaldo Cruz. 108, 563–571. https://doi.org/10.1590/0074-0276108052013005 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Burkett-Cadena, N. D. et al. Blood. Feeding patterns of potential arbovirus vectors of the genus. Am. J. Trop. Med. Hyg. 79, 809–815 (2008).

    Article 

    Google Scholar 

  • 33.

    Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 13, 433–453. https://doi.org/10.1146/annurev-ento-120811-153618 (2013).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Besansky, N. J., Hill, C. A. & Costantini, C. No accounting for taste: host preference in malaria vectors. Trends Parasitol. 20, 249–251. https://doi.org/10.1016/j.pt.2004.03.007 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Burkett-Cadena, N. D. & Hayes, L. E. Hosts or habitats: What drives the spatial distribution of mosquitoes? Hosts or habitats. Ecosphere 4, 30. https://doi.org/10.1890/ES13-00009.1 (2013).

    Article 

    Google Scholar 

  • 36.

    Borkent, A. & Belton, P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. Cambridge Univ. 94, 91–94. https://doi.org/10.4039/n04-113 (2006).

    Article 

    Google Scholar 

  • 37.

    Scott, T. W. & Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 28, 114–121. https://doi.org/10.1016/j.pt.2012.01.001 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Dizney, L. J. & Ruedas, L. A. Increased host species diversity and decreased prevalence of Sin nombre virus. Emerg. Infect. Dis. 15, 1012–1018. https://doi.org/10.3201/eid1507.081083 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511. https://doi.org/10.1086/664612 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 40.

    Rodrigues, B. N. & Boscolo, D. Do bipartite binary antagonistic and mutualistic networks have different responses to the taxonomic resolution of nodes?. Ecol. Entomol. 45, 709–717. https://doi.org/10.1111/een.12844 (2020).

    Article 

    Google Scholar 

  • 41.

    Segar, S. et al. The role of evolutionary processes in shaping ecological networks. Trends Ecol. Evol. 35, 4454–4466 (2020).

    Google Scholar 

  • 42.

    Svensson-Coelho, A. M. et al. Reciprocal specialization in multihost malaria parasite communities of birds: A temperate-tropical comparison. Am. Nat. 184, 624–635. https://doi.org/10.1086/678126 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Ghalmane, Z., El Hassouni, M., Cherifi, C. & Cherifi, H. Centrality in modular networks. EPJ. Data. Sci. 8, 15. https://doi.org/10.1140/epjds/s13688-019-0195-7 (2019).

    Article 

    Google Scholar 

  • 44.

    Rushmore, J., Bisanzio, D. & Gillespie, T. R. Making new connections: insights from primateparasite networks. Trends Parasitol. 33, 547–560 (2017).

    Article 

    Google Scholar 

  • 45.

    de Carneiro, I.O. et al. Knowledge, practice and perception of human-marsupial interactions in health promotion. J. Infect. Dev. Ctries. 13, 342–347. https://doi.org/10.3855/jidc.10177 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Root, J. J. et al. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am. J. Trop. Med. Hyg. 72, 622–630 (2005).

    Article 

    Google Scholar 

  • 47.

    Cardoso, J. et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus. Emerg. Infect. Dis. 16, 1918–1924. https://doi.org/10.3201/eid1612.100608 (2010).

    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Muñoz, M. & Navarro, J. C. Virus Mayaro: un arbovirus reemergente en Venezuela y Latinoamérica. Biomedica 32(286–302), 2012. https://doi.org/10.7705/biomedica.v32i2.64786-302 (2012).

    Article 

    Google Scholar 

  • 49.

    Turell, M. J. et al. Susceptibility of peruvian mosquitoes to eastern equine encephalitis virus. J. Med. Entomol. 45, 720–725. https://doi.org/10.1603/0022-2585 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Ferro, C. et al. Natural enzootic vectors of venezuelan equine encephalitis virus. Emerg. Infect. Dis. 9, 49–54. https://doi.org/10.3201/eid0901.020136 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Marsh, C., Link, A., King-Balley, G. & Donati, G. Effects of fragment and vegetation structure on the population abundance of Ateles hybridus, Alouatta seniculus and Cebus albifrons in Magdalena Valley, Colombia. Folia. Primatol. 87, 17–30. https://doi.org/10.1159/000443929 (2016).

    Article 

    Google Scholar 

  • 52.

    Link, A., De Luna, A. G., Alfonso, F., Giraldo-Beltran, P. & Ramirez, F. Initial effects of fragmentation on the density of three neotropical primate species in two lowland forests of Colombia. Endanger. Species Res. 13, 41–50. https://doi.org/10.3354/esr00312 (2010).

    Article 

    Google Scholar 

  • 53.

    Galindo, P., Blanton, S. & Peyton, E. L. A revision of the Uranotaenia of Panama with notes on other American species of the genus (Diptera, Culicidae). Ann. Entomol. Soc. Am. 47, 107–177. https://doi.org/10.1093/aesa/47.1.107 (1954).

    Article 

    Google Scholar 

  • 54.

    Forattini, O.P. Culicidologia médica Identificacao, biologia e epidemiologia. 884. (EDUSP, Sao Paulo, 2002).

  • 55.

    Folmer, Black, M., Hoeh, W. & Lutz, R. 1994 DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD. Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Guindon, S. et al. New Algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Molaei, G., Andreadis, T. G., Armstrong, P. M., Anderson, J. F. & Vossbrinck, C. R. Host feeding patterns of Culex Mosquitoes and West Nile virus transmission, Northeastern United States. Emerg. Infect. Dis. 12, 468–474. https://doi.org/10.3201/eid1203.051004 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Ferro, C. et al. Phlebotomine vector ecology in the domestic transmission of American cutaneous leishmaniasis in chaparral, Colombia. Am. J. Trop. Med. Hyg. 85, 847–856. https://doi.org/10.4269/ajtmh.2011.10-0560 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Moureau, G. et al. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 7, 467–477. https://doi.org/10.1089/vbz.2007.0206 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Lanciotti, R. S. et al. Genetic and serologic properties of zika virus associated with an epidemic, Yap State. Emerg. Infec. Dis. 14, 1232–1239. https://doi.org/10.3201/eid1408.080287 (2008).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 8, 361–362 (2009).

    Google Scholar 

  • 63.

    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. https://doi.org/10.1098/rsos.140536 (2016).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).

    Article 

    Google Scholar 

  • 65.

    Almeida-Neto, M., Guimara, P., Guimara, P. R. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(1227–1239), 39. https://doi.org/10.1111/j.2008.0030-1299.16644.x (2008).

    Article 

    Google Scholar 

  • 66.

    Almeida-Neto, M. & Ulrich, W. Environmental Modelling & Software A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178. https://doi.org/10.1016/j.envsoft.2010.08.003 (2011).

    Article 

    Google Scholar 

  • 67.

    Bascompte, J., Olesen, J. M., Jordano, P. & Melia, C. J. The nested assembly of plant–animal mutualistic networks. PNAS 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100100 (2003).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. https://doi.org/10.1186/1472-6785-6-9 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Romain, J., Joanne, C., Vincent, D., Frederic, J. & Denis, C. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x (2006).

    Article 

    Google Scholar 

  • 70.

    Bascompte, J., Jordano, P. & Olesen, J. M. Facilitate biodiversity maintenance. Science 312, 431–433. https://doi.org/10.1126/science.1123412 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Crossing disciplines, adding fresh eyes to nuclear engineering