Figueiredo, M. Human urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Front Cell Infect. Microbiol. 9, 1–6. https://doi.org/10.3389/fcimb.2019.00259 (2019).
Google Scholar
Reeves, L. E. et al. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida. PLoS ONE 13, 1–15. https://doi.org/10.1371/journal.pone.0190633 (2018).
Google Scholar
Reeves, L. E., Gillett-Kaufman, J. L., Kawahara, A. Y. & Kaufman, E. Barcoding blood meals : New vertebrate- specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meal. PLoS Negl. Trop. Dis. 12, 1–18. https://doi.org/10.1371/journal.pntd.0006767 (2018).
Google Scholar
Makanga, B. et al. “Show me which parasites you carry and I will tell you what you eat”, or how to infer the trophic behavior of hematophagous arthropods feeding on wildlife. Ecol. Evol. 7, 7578–7584. https://doi.org/10.1002/ece3.2769 (2017).
Google Scholar
Burkett-Cadena, N. D., Bingham, A. M., Porterfield, C. & Unnasch, T. R. Innate preference or opportunism : Mosquitoes feeding on birds of prey at the Southeastern raptor center. Vector Ecol. 39, 21–31. https://doi.org/10.1111/j.1948-7134.2014.12066.x (2014).
Google Scholar
Mendenhall, I. H., Tello, S. A., Neira, L. A., Castillo, L. F. & Ocampo, C. B. Host preference of the Arbovirus vector Culex erraticus (Diptera: host preference of the arbovirus vector Culex erraticus ( Diptera : Culicidae ) at Sonso Lake, Cauca valley department, Colombia. J. Med. Entomol. 49, 1092–1102. https://doi.org/10.1603/me11260 (2012).
Google Scholar
Harrington, L. C. et al. Why do female Aedes aegypti (Diptera: Culicidae ) feed preferentially and frequently on human blood?. J. Med. Entomol. 38, 411–422. https://doi.org/10.1603/0022-2585-38.3.411 (2001).
Google Scholar
Catenacci, L. S. et al. Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Bahia, Brazil. EcoHealth 15, 777–791. https://doi.org/10.1007/s10393-018-1361-2 (2018).
Google Scholar
Dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Infect. Dis. 28, 191. https://doi.org/10.1038/s41426-018-0194-y (2018).
Google Scholar
Borremans, B. et al. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Phil. Trans. R. Soc. B. 374, 20180344. https://doi.org/10.1098/rstb.2018.0344 (2019).
Google Scholar
Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends in Microbiol. 21, 360–363. https://doi.org/10.1016/j.tim.2013.03.003 (2013).
Google Scholar
Caron, A., Cappelle, J., Cumming, G. S., Garine-wichatitsky, M. D. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11. https://doi.org/10.1186/s13567-015-0217-9 (2015).
Google Scholar
Komar, N. & Clark, G. G. West Nile virus activity in Latin America and the Caribbean. Rev. Panam. Salud Publica. 19, 112–117. https://doi.org/10.1590/S1020-49892006000200006 (2006).
Google Scholar
Huba, Z. & Weissenbo, H. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280. https://doi.org/10.1016/j.vetmic.2009.08.025 (2010).
Google Scholar
Barrera, R., Navarro, J. & Liria, J. Contrasting sylvatic foci of Venezuelan equine encephalitis virus in Northern South America. Am. J. Trop. Med. Hyg. 67, 324–34. https://doi.org/10.4269/ajtmh.2002.67.324 (2002).
Google Scholar
Hoyos-López, R., Soto, S. U., Rúa-Uribe, G. & Gallego-Gómez, J. C. Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem. Inst. Oswaldo Cruz. 110, 719–725. https://doi.org/10.1590/0074-02760280040110 (2015).
Google Scholar
Guzmán, C., Calderón, A., Martinez, C., Oviedo, M. & Mattar, S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop. 191, 178–184. https://doi.org/10.1016/j.actatropica.2018.12.016 (2019).
Google Scholar
Torres-Gutierrez, C. et al. Mitochondrial COI gene as a tool in the taxonomy of mosquitoes Culex subgenus melanoconion. Acta Trop. 164, 137–149. https://doi.org/10.1016/j.actatropica.2016.09.007 (2016).
Google Scholar
Torres-Gutierrez, C. & Sallum, M. A. M. Catalog of the subgenus melanoconion of Culex (Diptera: Culicidae) for South America. Zootaxa. 4028, 1–50. https://doi.org/10.11646/zootaxa.4028.1.1 (2015).
Google Scholar
Torres-Gutierrez, C., Oliveira, T. M. P., Bergo, E. S. & Sallum, M. A. M. Molecular phylogeny of Culex subgenus Melanoconion (Diptera: Culicidae) based on nuclear and mitochondrial protein-coding genes. R Soc Open Sci. 5, 171900. https://doi.org/10.1098/rsos.171900 (2018).
Google Scholar
Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitol. 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).
Google Scholar
Laurito, M., De Oliveira, T. M. P., Almirón, W. R., Anice, M. & Sallum, M. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Mem. Inst. Oswaldo Cruz. 108, 110–122. https://doi.org/10.1590/0074-0276130457 (2013).
Google Scholar
IUCN 2020. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2020).
Roque, A. L. R. & Jansen, A. M. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl. 3, 251–262 (2014).
Google Scholar
Palermo, P. M. et al. Identification of blood meals from potential Arbovirus mosquito vectors in the peruvian amazon basin. Am. J. Trop. Med. Hyg. 95, 1026–1030. https://doi.org/10.4269/ajtmh.16-0167 (2016).
Google Scholar
Silva, S., Alencar, J., Costa, J. M., Seixas-lorosa, E. & Guimarães, A. É. Feeding patterns of mosquitoes (Diptera: Culicidae) in six Brazilian environmental preservation areas. J. Vector Ecol. 37, 342–350. https://doi.org/10.1111/j.1948-7134.2012.00237 (2012).
Google Scholar
Edman, J. D. Host-feeding patterns of florida mosquitoes I. Aedes, anopheles, coquillettidia, Mansonia and Psorophora. J. Med. Entomol. 30, 687–695. https://doi.org/10.1093/jmedent/8.6.687 (1971).
Google Scholar
Gabriel, Z. et al. Culex nigripalpus Theobald (Diptera, Culicidae) feeding habit at the Parque Ecológico. Rev. Bras. Entomol. 52, 4. https://doi.org/10.1590/S0085-56262008000400019 (2008).
Google Scholar
Zimmerman, R. H., Galardo, A. K., Lounibos, L, P., Arruda, M. & Wirtz, R. Bloodmeal Hosts of Anopheles Species (Diptera: Culicidae) in a Malaria-Endemic Area of the Brazilian Amazon. J. Med. Entomol. 43, 947–56. https://doi.org/10.1093/jmedent/43.5.947 (2006).
Google Scholar
Mitchell, C. J. et al. Hostfeeding patterns of Argentine mosquitoes (Diptera: Culicidae) collected during and after an epizootic of western equine encephalitis. J. Med. Entomol. 24, 260–267. https://doi.org/10.1093/jmedent/24.2.260 (1987).
Google Scholar
Stein, M., Zalazar, L., Willener, J. A., Almeida, F. L. & Almirón, W. R. Culicidae (Diptera ) selection of humans, chickens and rabbits in three different environments in the province of Chaco, Argentina. Mem. Inst. Oswaldo Cruz. 108, 563–571. https://doi.org/10.1590/0074-0276108052013005 (2013).
Google Scholar
Burkett-Cadena, N. D. et al. Blood. Feeding patterns of potential arbovirus vectors of the genus. Am. J. Trop. Med. Hyg. 79, 809–815 (2008).
Google Scholar
Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 13, 433–453. https://doi.org/10.1146/annurev-ento-120811-153618 (2013).
Google Scholar
Besansky, N. J., Hill, C. A. & Costantini, C. No accounting for taste: host preference in malaria vectors. Trends Parasitol. 20, 249–251. https://doi.org/10.1016/j.pt.2004.03.007 (2004).
Google Scholar
Burkett-Cadena, N. D. & Hayes, L. E. Hosts or habitats: What drives the spatial distribution of mosquitoes? Hosts or habitats. Ecosphere 4, 30. https://doi.org/10.1890/ES13-00009.1 (2013).
Google Scholar
Borkent, A. & Belton, P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. Cambridge Univ. 94, 91–94. https://doi.org/10.4039/n04-113 (2006).
Google Scholar
Scott, T. W. & Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 28, 114–121. https://doi.org/10.1016/j.pt.2012.01.001 (2012).
Google Scholar
Dizney, L. J. & Ruedas, L. A. Increased host species diversity and decreased prevalence of Sin nombre virus. Emerg. Infect. Dis. 15, 1012–1018. https://doi.org/10.3201/eid1507.081083 (2009).
Google Scholar
Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511. https://doi.org/10.1086/664612 (2012).
Google Scholar
Rodrigues, B. N. & Boscolo, D. Do bipartite binary antagonistic and mutualistic networks have different responses to the taxonomic resolution of nodes?. Ecol. Entomol. 45, 709–717. https://doi.org/10.1111/een.12844 (2020).
Google Scholar
Segar, S. et al. The role of evolutionary processes in shaping ecological networks. Trends Ecol. Evol. 35, 4454–4466 (2020).
Svensson-Coelho, A. M. et al. Reciprocal specialization in multihost malaria parasite communities of birds: A temperate-tropical comparison. Am. Nat. 184, 624–635. https://doi.org/10.1086/678126 (2014).
Google Scholar
Ghalmane, Z., El Hassouni, M., Cherifi, C. & Cherifi, H. Centrality in modular networks. EPJ. Data. Sci. 8, 15. https://doi.org/10.1140/epjds/s13688-019-0195-7 (2019).
Google Scholar
Rushmore, J., Bisanzio, D. & Gillespie, T. R. Making new connections: insights from primateparasite networks. Trends Parasitol. 33, 547–560 (2017).
Google Scholar
de Carneiro, I.O. et al. Knowledge, practice and perception of human-marsupial interactions in health promotion. J. Infect. Dev. Ctries. 13, 342–347. https://doi.org/10.3855/jidc.10177 (2019).
Google Scholar
Root, J. J. et al. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am. J. Trop. Med. Hyg. 72, 622–630 (2005).
Google Scholar
Cardoso, J. et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus. Emerg. Infect. Dis. 16, 1918–1924. https://doi.org/10.3201/eid1612.100608 (2010).
Google Scholar
Muñoz, M. & Navarro, J. C. Virus Mayaro: un arbovirus reemergente en Venezuela y Latinoamérica. Biomedica 32(286–302), 2012. https://doi.org/10.7705/biomedica.v32i2.64786-302 (2012).
Google Scholar
Turell, M. J. et al. Susceptibility of peruvian mosquitoes to eastern equine encephalitis virus. J. Med. Entomol. 45, 720–725. https://doi.org/10.1603/0022-2585 (2008).
Google Scholar
Ferro, C. et al. Natural enzootic vectors of venezuelan equine encephalitis virus. Emerg. Infect. Dis. 9, 49–54. https://doi.org/10.3201/eid0901.020136 (2003).
Google Scholar
Marsh, C., Link, A., King-Balley, G. & Donati, G. Effects of fragment and vegetation structure on the population abundance of Ateles hybridus, Alouatta seniculus and Cebus albifrons in Magdalena Valley, Colombia. Folia. Primatol. 87, 17–30. https://doi.org/10.1159/000443929 (2016).
Google Scholar
Link, A., De Luna, A. G., Alfonso, F., Giraldo-Beltran, P. & Ramirez, F. Initial effects of fragmentation on the density of three neotropical primate species in two lowland forests of Colombia. Endanger. Species Res. 13, 41–50. https://doi.org/10.3354/esr00312 (2010).
Google Scholar
Galindo, P., Blanton, S. & Peyton, E. L. A revision of the Uranotaenia of Panama with notes on other American species of the genus (Diptera, Culicidae). Ann. Entomol. Soc. Am. 47, 107–177. https://doi.org/10.1093/aesa/47.1.107 (1954).
Google Scholar
Forattini, O.P. Culicidologia médica Identificacao, biologia e epidemiologia. 884. (EDUSP, Sao Paulo, 2002).
Folmer, Black, M., Hoeh, W. & Lutz, R. 1994 DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD. Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
Google Scholar
Guindon, S. et al. New Algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).
Google Scholar
Molaei, G., Andreadis, T. G., Armstrong, P. M., Anderson, J. F. & Vossbrinck, C. R. Host feeding patterns of Culex Mosquitoes and West Nile virus transmission, Northeastern United States. Emerg. Infect. Dis. 12, 468–474. https://doi.org/10.3201/eid1203.051004 (2006).
Google Scholar
Ferro, C. et al. Phlebotomine vector ecology in the domestic transmission of American cutaneous leishmaniasis in chaparral, Colombia. Am. J. Trop. Med. Hyg. 85, 847–856. https://doi.org/10.4269/ajtmh.2011.10-0560 (2011).
Google Scholar
Moureau, G. et al. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 7, 467–477. https://doi.org/10.1089/vbz.2007.0206 (2007).
Google Scholar
Lanciotti, R. S. et al. Genetic and serologic properties of zika virus associated with an epidemic, Yap State. Emerg. Infec. Dis. 14, 1232–1239. https://doi.org/10.3201/eid1408.080287 (2008).
Google Scholar
Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 8, 361–362 (2009).
Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. https://doi.org/10.1098/rsos.140536 (2016).
Google Scholar
Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).
Google Scholar
Almeida-Neto, M., Guimara, P., Guimara, P. R. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(1227–1239), 39. https://doi.org/10.1111/j.2008.0030-1299.16644.x (2008).
Google Scholar
Almeida-Neto, M. & Ulrich, W. Environmental Modelling & Software A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178. https://doi.org/10.1016/j.envsoft.2010.08.003 (2011).
Google Scholar
Bascompte, J., Olesen, J. M., Jordano, P. & Melia, C. J. The nested assembly of plant–animal mutualistic networks. PNAS 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100100 (2003).
Google Scholar
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. https://doi.org/10.1186/1472-6785-6-9 (2006).
Google Scholar
Romain, J., Joanne, C., Vincent, D., Frederic, J. & Denis, C. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x (2006).
Google Scholar
Bascompte, J., Jordano, P. & Olesen, J. M. Facilitate biodiversity maintenance. Science 312, 431–433. https://doi.org/10.1126/science.1123412 (2006).
Google Scholar
Source: Ecology - nature.com