in

Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum)

  • 1.

    Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).

    Article 

    Google Scholar 

  • 3.

    Henschke, N. et al. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. J. Geophys. Res. Biogeosci. 124, 1056–1070 (2019).

    Article 

    Google Scholar 

  • 4.

    Schram, J. B., Sorensen, H. L., Brodeur, R. D., Galloway, A. W. E. & Sutherland, K. R. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California Current. Mar. Ecol. Prog. Ser. 651, 97–110 (2020).

  • 5.

    O’Loughlin, J. H. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 102424 (2020).

  • 6.

    Hobson, E. S. & Chess, J. Trophic relations of the blue rockfish, Sebastes mystinus, in a coastal upwelling system off northern California. in Fishery Bulletin, Vol. 86, 715–743 (National Marine Fisheries Service, 1988).

  • 7.

    Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off Southern Tasmania, Australia. Mar. Freshw. Res. 53, 59–72 (2002).

    Article 

    Google Scholar 

  • 8.

    Harbison, G. R. The parasites and predators of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).

  • 9.

    James, G. D. & Stahl, J. -C. Diet of southern Buller’s albatross (Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. N. Z. J. Mar. Freshw. Res. 34, 435–454 (2000).

    Article 

    Google Scholar 

  • 10.

    Hedd, A. & Gales, R. The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. J. Zool. 253, 69–90 (2001).

    Article 

    Google Scholar 

  • 11.

    Childerhouse, S., Dix, B. & Gales, N. Diet of New Zealand sea lions (Phocarctos hookeri) at the Auckland Islands. Wildl. Res. 28, 291–298 (2001).

    Article 

    Google Scholar 

  • 12.

    Lindley, J. A., Hernández, F., Scatllar, J. & Docoito, J. Funchalia sp. (Crustacea: Penaeidae) associated with Pyrosoma atlanticum (Thaliacea: Pyrosomidae) off the Canary Islands. J. Mar. Biol. Assoc. UK 81, 173–174 (2001).

    Article 

    Google Scholar 

  • 13.

    Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Sherr E. & Sherr B. Understanding roles of microbes in marine pelagic food webs: a brief history. in Microbial Ecology of the Oceans 27–44 (John Wiley & Sons Ltd, 2008).

  • 17.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Décima, M., Stukel, M. R., López-López, L. & Landry, M. R. The unique ecological role of pyrosomes in the Eastern Tropical Pacific. Limnol. Oceanogr. 64, 728–743 (2019).

    Article 

    Google Scholar 

  • 19.

    Gauns, M., Mochemadkar, S., Pratihary, A., Roy, R. & Naqvi, S. W. A. Biogeochemistry and ecology of Pyrosoma spinosum from the Central Arabian Sea. Zool. Stud. 54, 3 (2015).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2010).

    Article 

    Google Scholar 

  • 22.

    Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817–823 (1977).

  • 23.

    Martínez‐García, M. et al. Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ. Microbiol. 10, 2991–3001 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 24.

    Donia, M. S. et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl Acad. Sci. 108, E1423–E1432 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Kwan, J. C. et al. Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella. PLoS ONE 9, e95850 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Purcell, J. E. & Arai, M. N. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia. 451, 27–44 (2001).

    Article 

    Google Scholar 

  • 27.

    Delannoy, C. M. J., Houghton, J. D. R., Fleming, N. E. C. & Ferguson, H. W. Mauve stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture. 311, 255–257 (2011).

    Article 

    Google Scholar 

  • 28.

    Lee, M. D., Kling, J. D., Araya, R. & Ceh, J. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Front. Microbiol. 9, 1534 (2018).

  • 29.

    Troussellier, M., Escalas, A., Bouvier, T. & Mouillot, D. Sustaining rare marine microorganisms: macroorganisms as repositories and dispersal agents of microbial diversity. Front. Microbiol. 8 (2017).

  • 30.

    Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the Great Pyrosome Bloom of 2017. PICES Press; Sidney Vol. 26, 22–27 (Winter, 2018).

  • 31.

    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Miller, R. R. et al. Distribution of pelagic Thaliaceans, Thetys vagina and Pyrosoma Atlanticum, during a period of mass occurrence within the California current. CalCOFI Rep. 60, (2019).

  • 33.

    Guigand, C. M., Cowen, R. K., Llopiz, J. K. & Richardson, D. E. A coupled asymmetrical multiple opening closing net with environmental sampling system. Mar. Technol. Soc. J. 39, 22–24 (2005).

  • 34.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 39.

    Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article 

    Google Scholar 

  • 42.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Duperron, S. Microbial Symbioses 168 p. (Elsevier, 2016).

  • 45.

    Schmitt, S. et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6, 564–576 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8 (2017).

  • 47.

    Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J. & Dunlap, P. V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int. J. Syst. Evol. Microbiol. 57, 2823–2829 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Booth, B. C. Marine phytoplankton. A guide to naked flagellates and coccolithophorids (C. R. Tomas [ed.]). Limnol. Oceanogr. 39, 982–983 (1994).

    Article 

    Google Scholar 

  • 51.

    Halse, G. R. & Syvertsen, E. E. Chapter 2—marine diatoms. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 5–385 (Academic Press, 1996).

  • 52.

    Steidinger, K. A. & Tangen, K. Chapter 3—dinoflagellates. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 387–584 (Academic Press, 1996).

  • 53.

    Daniels, C. & Breitbart, M. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovata. FEMS Microbiol. Ecol. 82, 90–101 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Kramar, M. K., Tinta, T., Lučić, D., Malej, A. & Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE 14, e0198056 (2019).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. mBio 9, e00812–18 (2018).

  • 56.

    Webster, N. S. & Bourne, D. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol. 59, 81–94 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Rodrigues, C. F., Hilário, A., Cunha, M. R., Weightman, A. J. & Webster, G. Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Antonie Van Leeuwenhoek 100, 83–98 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    McCann, J., Stabb, E. V., Millikan, D. S. & Ruby, E. G. Population dynamics of Vibrio fischeri during Infection of Euprymna scolopes. Appl. Environ. Microbiol. 69, 5928–5934 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Hammann, S., Moss, A. & Zimmer, M. Sterile surfaces of Mnemiopsis leidyi; (Ctenophora) in bacterial suspension—a key to invasion success? Open J. Mar. Sci. 05, 237–246 (2015).

    Article 

    Google Scholar 

  • 60.

    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 https://doi.org/10.1093/femsle/fnz117 (2019).

  • 61.

    Nedashkovskaya, O. I., Kukhlevskiy, A. D., Zhukova, N. V. & Kim, S. B. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch. Microbiol. 198, 251–256 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5, 590–600 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Catão, E. C. P. et al. Shear stress as a major driver of marine biofilm communities in the NW Mediterranean Sea. Front. Microbiol. 10 (2019).

  • 64.

    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Bondoso, J. et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst. Appl. Microbiol. 38, 8–15 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Zhu, P., Li, Q. & Wang, G. Unique microbial signatures of the Alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55, 406–414 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Pimentel-Elardo, S., Wehrl, M., Friedrich, A. B., Jensen, P. R. & Hentschel, U. Isolation of planctomycetes from Aplysina sponges. Aquat. Microb. Ecol. 33, 239–245 (2003).

    Article 

    Google Scholar 

  • 68.

    da Silva Oliveira, F. A. et al. Microbial epibionts of the colonial ascidians Didemnum galacteum and Cystodytes sp. Symbiosis 59, 57–63 (2013).

    Article 

    Google Scholar 

  • 69.

    Yakimov, M. M. et al. Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep Sea Res. A Oceanogr. Res. Pap. 53, 62–75 (2006).

    Article 

    Google Scholar 

  • 70.

    Duque-Alarcón, A., Santiago-Vázquez, L. Z. & Kerr, R. G. A microbial community analysis of the octocoral Eunicea fusca. Electron. J. Biotechnol. 15, 15–15 (2012).

    Google Scholar 

  • 71.

    Wiegand, S., Jogler, M. & Jogler, C. On the maverick Planctomycetes. FEMS Microbiol. Rev. 42, 739–760 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Lage, O. M. & Bondoso, J. Planctomycetes and macroalgae, a striking association. Front. Microbiol. 5 (2014).

  • 73.

    Ward, A. C. & Bora, N. Diversity and biogeography of marine Actinobacteria. Curr. Opin. Microbiol. 9, 279–286 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Hahn, M. W. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int. J. Syst. Evol. Microbiol. 59, 112–117 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Gandhimathi, R. et al. Antimicrobial potential of sponge associated marine actinomycetes. J. Mycol. Méd. 18, 16–22 (2008).

    Article 

    Google Scholar 

  • 76.

    Abdelmohsen, U. R., Bayer, K. & Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 31, 381–399 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Wu, Z. et al. A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of puffer fish Fugu rubripes. Toxicon. 45, 851–859 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Marshall, R. C. & Whitworth, D. E. Is “Wolf-Pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside Kin. BioEssays 41, 1800247 (2019).

    Article 

    Google Scholar 

  • 80.

    Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Wang, Z., Kadouri, D. E. & Wu, M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 12, 453 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Garcia, G. D. et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb. Ecol. 65, 1076–1086 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Rosales, S. M. et al. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Evans, A. G. L. et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158, 2742–2752 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Sudo, S. & Dworkin, M. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110, 236–245 (1972).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Tessler, M. et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci. Rep. 10, 17724 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Berger, A. et al. Microscopic and Genetic Characterization of Bacterial Symbionts With Bioluminescent Potential in Pyrosoma Atlanticum. Frontiers in Marine Science. 8 https://doi.org/10.3389/fmars.2021.606818 (2021).

  • 88.

    Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soc. Lond. B Biol. Sci. 202, 483–495 (1978).

    Article 

    Google Scholar 

  • 90.

    Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Takemura, A. F., Chien, D. M. & Polz M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5 (2014).

  • 92.

    Barnes, E. M., Carter, E. L. & Lewis, J. D. Predicting microbiome function across space is confounded by strain-level differences and functional redundancy across taxa. Front. Microbiol. 11 (2020).

  • 93.

    Tian, L. et al. Deciphering functional redundancy in the human microbiome. bioRxiv 176313 https://doi.org/10.1101/176313 (2017).

  • 94.

    Kaeding, A. J. et al. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of “Photobacterium mandapamensis”. Appl. Environ. Microbiol. 73, 3173–3182 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Baker, L. J. et al. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 8 e47606 (2019).

  • 96.

    Godeaux, J. E. A., Bone, Q. & Braconnot, J. C. Anatomy of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).

  • 97.

    Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. BioScience. 32, 655–663 (1982).

    Article 

    Google Scholar 

  • 98.

    Bone, Q., Carre, C. & Ryan, K. P. The endostyle and the feeding filter in salps (Tunicata). J. Mar. Biol. Assoc. UK 80, 523–534 (2000).

    Article 

    Google Scholar 

  • 99.

    Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Dadon-Pilosof, A. et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2, 1608–1615 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Larson, R. J. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada. Neth. J. Sea Res. 21, 35–44 (1987).

    Article 

    Google Scholar 

  • 102.

    Suchman, C. L., Daly, E. A., Keister, J. E., Peterson, W. T. & Brodeur, R. D. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar. Ecol. Prog. Ser. 358, 161–172 (2008).

    Article 

    Google Scholar 

  • 103.

    Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).

    CAS 
    Article 

    Google Scholar 

  • 104.

    Green, B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles. 34, e2020GB006704 (2020).

  • 106.

    Dadon‐Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).

    Article 

    Google Scholar 

  • 107.

    Brand, A., Liz, A., Micah, A., Marjorie, H. & Jo, S. Beyond Authorship: Attribution, Contribution, Collaboration, and Credit. Learned Publishing. 28, 151–155 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints