Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S. 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 (2009).
Google Scholar
Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81-93. https://doi.org/10.1086/680220 (2015).
Google Scholar
MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Chang. Biol 23, 4094–4105. https://doi.org/10.1111/gcb.13736 (2017).
Google Scholar
Reid, N. European hare (Lepus europaeus) invasion ecology: Implication for the conservation of the endemic Irish hare (Lepus timidus hibernicus). Biol. Invas. 13, 559–569. https://doi.org/10.1007/s10530-010-9849-x (2011).
Google Scholar
Thulin, C.-G. The distribution of mountain hares (Lepus timidus, L. 1758) in Europe: A challenge from brown hares (L. europaeus, Pall 1778)?. Mammal Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).
Google Scholar
Levanen, R., Kunnasranta, M. & Pohjoismaki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann. Zool. Fenn. 55, 15–24 (2018).
Google Scholar
Lönnberg, D. On hybrids between Lepus timidus L. and Lepus europeus Pall. from southern Sweden. Proc. Zool. Soc. Lond. 1, 278–287 (1905).
Thenius, E. Grundzüge der Faunen- und Verbreitungsgesichte der Säugetiere (Gustav Fisher Verlag, 1980).
Levanen, R., Thulin, C. G., Spong, G. & Pohjoismaki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS ONE https://doi.org/10.1371/journal.pone.0191790 (2018).
Google Scholar
Angerbjorn, A. & Flux, J. E. C. Lepus timidus. Mammalian Sp. 495, 1–11 (1995).
Ferreira, M. S. et al. The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Mol. Ecol. 26, 4173–4185. https://doi.org/10.1111/mec.14177 (2017).
Google Scholar
Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358. https://doi.org/10.1126/science.aar5273 (2018).
Google Scholar
Cheng, E., Hodges, K. E., Melo-Ferreira, J., Alves, P. C. & Mills, L. S. Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Mol. Ecol. 23, 2929–2942. https://doi.org/10.1111/mec.12790 (2014).
Google Scholar
Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. Convergent evolution of seasonal camouflage in response to reduced snow cover across the snowshoe hare range. Evolution 74, 2033–2045. https://doi.org/10.1111/evo.13976 (2020).
Google Scholar
Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. The origin and spread of locally adaptive seasonal camouflage in snowshoe hares. Am. Nat. 196, 316–332. https://doi.org/10.1086/710022 (2020).
Google Scholar
Ferreira, M. S. et al. Transcriptomic regulation of seasonal coat color change in hares. Ecol. Evol. 10, 1180–1192. https://doi.org/10.1002/ece3.5956 (2020).
Google Scholar
Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607. https://doi.org/10.1093/sysbio/syaa088 (2021).
Google Scholar
Giska, I. et al. Introgression drives repeated evolution of winter coat color polymorphism in hares. Proc. Natl. Acad. Sci. U.S.A. 116, 24150–24156. https://doi.org/10.1073/pnas.1910471116 (2019).
Google Scholar
Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307. https://doi.org/10.1111/ele.12568 (2016).
Google Scholar
Zimova, M., Mills, L. S., Lukacs, P. M. & Mitchell, M. S. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc. Biol. Sci. 281, 20140029. https://doi.org/10.1098/rspb.2014.0029 (2014).
Google Scholar
Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc. Biol. Sci. 287, 20201786. https://doi.org/10.1098/rspb.2020.1786 (2020).
Google Scholar
Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37. https://doi.org/10.1016/j.cmet.2018.11.002 (2019).
Google Scholar
Nowack, J., Giroud, S., Arnold, W. & Ruf, T. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front. Physiol. 8, 889. https://doi.org/10.3389/fphys.2017.00889 (2017).
Google Scholar
Hancock, A. M., Clark, V. J., Qian, Y. D. & Di Rienzo, A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol. Biol. Evol. 28, 601–614. https://doi.org/10.1093/molbev/msq228 (2011).
Google Scholar
Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96, 7–21. https://doi.org/10.1038/sj.hdy.6800724 (2006).
Google Scholar
Sin, Y. W. et al. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol. Ecol. 23, 5072–5088. https://doi.org/10.1111/mec.12917 (2014).
Google Scholar
Borghans, J. A., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739. https://doi.org/10.1007/s00251-003-0630-5 (2004).
Google Scholar
Apanius, V., Penn, D., Slev, P. R., Ruff, L. R. & Potts, W. K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 37, 75–120. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.10 (2017).
Google Scholar
Manlik, O. et al. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol. Evol. 9, 6986–6998. https://doi.org/10.1002/ece3.5265 (2019).
Google Scholar
Radwan, J., Biedrzycka, A. & Babik, W. Does reduced MHC diversity decrease viability of vertebrate populations?. Biol. Conserv. 143, 537–544. https://doi.org/10.1016/j.biocon.2009.07.026 (2010).
Google Scholar
Lan, H., Zhou, T., Wan, Q. H. & Fang, S. G. Genetic diversity and differentiation at structurally varying MHC haplotypes and microsatellites in bottlenecked populations of endangered crested ibis. Cells-Basel https://doi.org/10.3390/cells8040377 (2019).
Google Scholar
Cornetti, L., Hilfiker, D., Lemoine, M. & Tschirren, B. Small-scale spatial variation in infection risk shapes the evolution of a Borrelia resistance gene in wild rodents. Mol. Ecol. 27, 3515–3524. https://doi.org/10.1111/mec.14812 (2018).
Google Scholar
Tschirren, B., Andersson, M., Scherman, K., Westerdahl, H. & Raberg, L. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution 66, 720–731. https://doi.org/10.1111/j.1558-5646.2011.01473.x (2012).
Google Scholar
Mukherjee, S., Ganguli, D. & Majumder, P. P. Global footprints of purifying selection on Toll-like receptor genes primarily associated with response to bacterial infections in humans. Genome Biol. Evol. 6, 551–558. https://doi.org/10.1093/gbe/evu032 (2014).
Google Scholar
Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?. Mol. Ecol. 21, 4942–4957. https://doi.org/10.1111/mec.12006 (2012).
Google Scholar
Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323 (1973).
Google Scholar
Klein, J., Sato, A. & Nikolaidis, N. MHC, TSP, and the origin of species: From immunogenetics to evolutionary genetics. Annu. Rev. Genet. 41, 281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137 (2007).
Google Scholar
Surridge, A. K. et al. Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60, 515–525. https://doi.org/10.1007/s00251-008-0309-z (2008).
Google Scholar
Smith, S., de Bellocq, J. G., Suchentrunk, F. & Schaschl, H. Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics 63, 743–751. https://doi.org/10.1007/s00251-011-0539-3 (2011).
Google Scholar
Excoffier, L., Hofer, T. & Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity (Edinb) 103, 285–298. https://doi.org/10.1038/hdy.2009.74 (2009).
Google Scholar
Thulin, C. G., Jaarola, M. & Tegelstrom, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).
Google Scholar
Marques, J. P. et al. Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci. Rep. https://doi.org/10.1038/Srep40788 (2017).
Google Scholar
Melo-Ferreira, J., Boursot, P., Suchentrunk, F., Ferrand, N. & Alves, P. C. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol. Ecol. 14, 2459–2464. https://doi.org/10.1111/j.1365-294X.2005.02599.x (2005).
Google Scholar
Glover, K. A. et al. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet. 11, 2. https://doi.org/10.1186/1471-2156-11-2 (2010).
Google Scholar
Kristensen, T. N., Hoffmann, A. A., Pertoldi, C. & Stronen, A. V. What can livestock breeders learn from conservation genetics and vice versa?. Front. Genet. https://doi.org/10.3389/Fgene.2015.00038 (2015).
Google Scholar
Nishimura, T., Katsumura, T., Motoi, M., Oota, H. & Watanuki, S. Experimental evidence reveals the UCP1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans. Sci. Rep. 7, 5570. https://doi.org/10.1038/s41598-017-05766-3 (2017).
Google Scholar
Glanville, E. J., Murray, S. A. & Seebacher, F. Thermal adaptation in endotherms: Climate and phylogeny interact to determine population-level responses in a wild rat. Funct. Ecol. 26, 390–398. https://doi.org/10.1111/j.1365-2435.2011.01933.x (2012).
Google Scholar
Leroy, G., Phocas, F., Hedan, B., Verrier, E. & Rognon, X. Inbreeding impact on litter size and survival in selected canine breeds. Vet. J. 203, 74–78. https://doi.org/10.1016/j.tvjl.2014.11.008 (2015).
Google Scholar
Zhang, P. et al. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evol. Biol https://doi.org/10.1186/s12862-018-1148-7 (2018).
Google Scholar
Cortazar-Chinarro, M., Meyer-Lucht, Y., Laurila, A. & Hoglund, J. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 70, 477–484. https://doi.org/10.1007/s00251-017-1051-1 (2018).
Google Scholar
Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. & Schook, L. B. Adaptive evolution of toll-like receptors (TLRs) in the Family Suidae. PLoS ONE 10, e0124069. https://doi.org/10.1371/journal.pone.0124069 (2015).
Google Scholar
Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192. https://doi.org/10.1111/mec.12725 (2014).
Google Scholar
Quesada-Lopez, T. et al. GPR120 controls neonatal brown adipose tissue thermogenic induction. Am. J. Physiol. Endocrinol. Metab. 317, E742–E750. https://doi.org/10.1152/ajpendo.00081.2019 (2019).
Google Scholar
Luijten, I. H. N., Feldmann, H. M., von Essen, G., Cannon, B. & Nedergaard, J. In the absence of UCP1-mediated diet-induced thermogenesis, obesity is augmented even in the obesity-resistant 129S mouse strain. Am. J. Physiol. Endocrinol. Metab. 316, E729–E740. https://doi.org/10.1152/ajpendo.00020.2019 (2019).
Google Scholar
Klein, J., Sato, A., Nagl, S. & OhUigin, C. Molecular trans-species polymorphism. Annu. Rev. Ecol. Syst. 29, 1. https://doi.org/10.1146/annurev.ecolsys.29.1.1 (1998).
Google Scholar
Gouy Bellocq, J., Suchentrunk, F., Baird, S. J. & Schaschl, H. Evolutionary history of an MHC gene in two leporid species: Characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 61, 131–144. https://doi.org/10.1007/s00251-008-0349-4 (2009).
Google Scholar
Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P. & Slowinski, J. B. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740. https://doi.org/10.1146/annurev.ecolsys.33.010802.150500 (2002).
Google Scholar
Lenz, T. L. Adaptive value of novel MHC immune gene variants. Proc. Natl. Acad. Sci. U.S.A. 115, 1414–1416. https://doi.org/10.1073/pnas.1722600115 (2018).
Google Scholar
Fijarczyk, A., Dudek, K., Niedzicka, M. & Babik, W. Balancing selection and introgression of newt immune-response genes. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.0819 (2018).
Google Scholar
Grossen, C., Keller, L., Biebach, I., Croll, D. & Consortium, I. G. G. Introgression from domestic goat generated variation at the major histocompatibility complex of alpine Ibex. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004438 (2014).
Google Scholar
Nadachowska-Brzyska, K., Zielinski, P., Radwan, J. & Babik, W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 21, 887–906. https://doi.org/10.1111/j.1365-294X.2011.05347.x (2012).
Google Scholar
Wegner, K. M. & Eizaguirre, C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21, 779–781. https://doi.org/10.1111/j.1365-294X.2011.05401.x (2012).
Google Scholar
Thulin, C. G. The distribution of mountain hares Lepus timidus in Europe: A challenge from brown hares L-europaeus ?. Mammal. Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).
Google Scholar
Jansson, G. & Pehrson, A. The recent expansion of the brown hare (Lepus europaeus) in Sweden with possible implications to the mountain hare (L-timidus). Eur. J. Wildlife Res. 53, 125–130. https://doi.org/10.1007/s10344-007-0086-2 (2007).
Google Scholar
Smith, S. et al. Nonreceding hare lines: Genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus). Biol. J. Linn Soc. 120, 891–908 (2017).
Google Scholar
Levanen, R., Pohjoismaki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).
Google Scholar
Palo, J. U., Ulmanen, I., Lukka, M., Ellonen, P. & Sajantila, A. Genetic markers and population history: Finland revisited. Eur. J. Hum. Genet. EJHG 17, 1336–1346. https://doi.org/10.1038/ejhg.2009.53 (2009).
Google Scholar
RCoreTeam. R: A language and environment for statistical computing., Vol. https://www.R-project.org/. ( R Foundation for Statistical Computing, 2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Vol. https://ggplot2.tidyverse.org (Springer-Verlag, 2016).
Biedrzycka, A., Sebastian, A., Migalska, M., Westerdahl, H. & Radwan, J. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol. Ecol. Resour. 17, 642–655. https://doi.org/10.1111/1755-0998.12612 (2017).
Google Scholar
Sebastian, A., Migalska, M. & Biedrzycka, A. AmpliSAS and AmpliHLA: Web server tools for MHC typing of non-model species and human using NGS data. Methods Mol. Biol. 249–273, 2018. https://doi.org/10.1007/978-1-4939-8546-3_18 (1802).
Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).
Google Scholar
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
Google Scholar
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).
Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).
Google Scholar
Rambaut, A. FigTree. 1.4.3. Graphical viewer of phylogenetic trees. (http://tree.bio.ed.ac.uk/software/figtree/), <http://tree.bio.ed.ac.uk/software/figtree/> (2018).
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resourc. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Google Scholar
Smith, S. et al. Homozygosity at a class II MHC locus depresses female reproductive ability in European brown hares. Mol. Ecol. 19, 4131–4143. https://doi.org/10.1111/j.1365-294X.2010.04765.x (2010).
Google Scholar
Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630. https://doi.org/10.1111/mec.12886 (2014).
Google Scholar
Matthee, C. A., van Vuuren, B. J., Bell, D. & Robinson, T. J. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst. Biol. 53, 433–447. https://doi.org/10.1080/10635150490445715 (2004).
Google Scholar
Humphreys, A. M. & Barraclough, T. G. The evolutionary reality of higher taxa in mammals. Proc. Biol. Sci. 281, 20132750. https://doi.org/10.1098/rspb.2013.2750 (2014).
Google Scholar
Ge, D. et al. Evolutionary history of lagomorphs in response to global environmental change. PLoS ONE 8, e59668. https://doi.org/10.1371/journal.pone.0059668 (2013).
Google Scholar
Soria-Carrasco, V. & Castresana, J. Diversification rates and the latitudinal gradient of diversity in mammals. Proc. Biol. Sci. 279, 4148–4155. https://doi.org/10.1098/rspb.2012.1393 (2012).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Google Scholar
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Source: Ecology - nature.com