in

Hybridization with mountain hares increases the functional allelic repertoire in brown hares

  • 1.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S. 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 (2009).

    Article 

    Google Scholar 

  • 2.

    Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81-93. https://doi.org/10.1086/680220 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Chang. Biol 23, 4094–4105. https://doi.org/10.1111/gcb.13736 (2017).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Reid, N. European hare (Lepus europaeus) invasion ecology: Implication for the conservation of the endemic Irish hare (Lepus timidus hibernicus). Biol. Invas. 13, 559–569. https://doi.org/10.1007/s10530-010-9849-x (2011).

    Article 

    Google Scholar 

  • 5.

    Thulin, C.-G. The distribution of mountain hares (Lepus timidus, L. 1758) in Europe: A challenge from brown hares (L. europaeus, Pall 1778)?. Mammal Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).

    Article 

    Google Scholar 

  • 6.

    Levanen, R., Kunnasranta, M. & Pohjoismaki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann. Zool. Fenn. 55, 15–24 (2018).

    Article 

    Google Scholar 

  • 7.

    Lönnberg, D. On hybrids between Lepus timidus L. and Lepus europeus Pall. from southern Sweden. Proc. Zool. Soc. Lond. 1, 278–287 (1905).

    Google Scholar 

  • 8.

    Thenius, E. Grundzüge der Faunen- und Verbreitungsgesichte der Säugetiere (Gustav Fisher Verlag, 1980).

    Google Scholar 

  • 9.

    Levanen, R., Thulin, C. G., Spong, G. & Pohjoismaki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS ONE https://doi.org/10.1371/journal.pone.0191790 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Angerbjorn, A. & Flux, J. E. C. Lepus timidus. Mammalian Sp. 495, 1–11 (1995).

    Google Scholar 

  • 11.

    Ferreira, M. S. et al. The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Mol. Ecol. 26, 4173–4185. https://doi.org/10.1111/mec.14177 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358. https://doi.org/10.1126/science.aar5273 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Cheng, E., Hodges, K. E., Melo-Ferreira, J., Alves, P. C. & Mills, L. S. Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Mol. Ecol. 23, 2929–2942. https://doi.org/10.1111/mec.12790 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. Convergent evolution of seasonal camouflage in response to reduced snow cover across the snowshoe hare range. Evolution 74, 2033–2045. https://doi.org/10.1111/evo.13976 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. The origin and spread of locally adaptive seasonal camouflage in snowshoe hares. Am. Nat. 196, 316–332. https://doi.org/10.1086/710022 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Ferreira, M. S. et al. Transcriptomic regulation of seasonal coat color change in hares. Ecol. Evol. 10, 1180–1192. https://doi.org/10.1002/ece3.5956 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607. https://doi.org/10.1093/sysbio/syaa088 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Giska, I. et al. Introgression drives repeated evolution of winter coat color polymorphism in hares. Proc. Natl. Acad. Sci. U.S.A. 116, 24150–24156. https://doi.org/10.1073/pnas.1910471116 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307. https://doi.org/10.1111/ele.12568 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Zimova, M., Mills, L. S., Lukacs, P. M. & Mitchell, M. S. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc. Biol. Sci. 281, 20140029. https://doi.org/10.1098/rspb.2014.0029 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc. Biol. Sci. 287, 20201786. https://doi.org/10.1098/rspb.2020.1786 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37. https://doi.org/10.1016/j.cmet.2018.11.002 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Nowack, J., Giroud, S., Arnold, W. & Ruf, T. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front. Physiol. 8, 889. https://doi.org/10.3389/fphys.2017.00889 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Hancock, A. M., Clark, V. J., Qian, Y. D. & Di Rienzo, A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol. Biol. Evol. 28, 601–614. https://doi.org/10.1093/molbev/msq228 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96, 7–21. https://doi.org/10.1038/sj.hdy.6800724 (2006).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Sin, Y. W. et al. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol. Ecol. 23, 5072–5088. https://doi.org/10.1111/mec.12917 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Borghans, J. A., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739. https://doi.org/10.1007/s00251-003-0630-5 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Apanius, V., Penn, D., Slev, P. R., Ruff, L. R. & Potts, W. K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 37, 75–120. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.10 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Manlik, O. et al. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol. Evol. 9, 6986–6998. https://doi.org/10.1002/ece3.5265 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Radwan, J., Biedrzycka, A. & Babik, W. Does reduced MHC diversity decrease viability of vertebrate populations?. Biol. Conserv. 143, 537–544. https://doi.org/10.1016/j.biocon.2009.07.026 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Lan, H., Zhou, T., Wan, Q. H. & Fang, S. G. Genetic diversity and differentiation at structurally varying MHC haplotypes and microsatellites in bottlenecked populations of endangered crested ibis. Cells-Basel https://doi.org/10.3390/cells8040377 (2019).

    Article 

    Google Scholar 

  • 32.

    Cornetti, L., Hilfiker, D., Lemoine, M. & Tschirren, B. Small-scale spatial variation in infection risk shapes the evolution of a Borrelia resistance gene in wild rodents. Mol. Ecol. 27, 3515–3524. https://doi.org/10.1111/mec.14812 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Tschirren, B., Andersson, M., Scherman, K., Westerdahl, H. & Raberg, L. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution 66, 720–731. https://doi.org/10.1111/j.1558-5646.2011.01473.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Mukherjee, S., Ganguli, D. & Majumder, P. P. Global footprints of purifying selection on Toll-like receptor genes primarily associated with response to bacterial infections in humans. Genome Biol. Evol. 6, 551–558. https://doi.org/10.1093/gbe/evu032 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?. Mol. Ecol. 21, 4942–4957. https://doi.org/10.1111/mec.12006 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Klein, J., Sato, A. & Nikolaidis, N. MHC, TSP, and the origin of species: From immunogenetics to evolutionary genetics. Annu. Rev. Genet. 41, 281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Surridge, A. K. et al. Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60, 515–525. https://doi.org/10.1007/s00251-008-0309-z (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Smith, S., de Bellocq, J. G., Suchentrunk, F. & Schaschl, H. Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics 63, 743–751. https://doi.org/10.1007/s00251-011-0539-3 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Excoffier, L., Hofer, T. & Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity (Edinb) 103, 285–298. https://doi.org/10.1038/hdy.2009.74 (2009).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Thulin, C. G., Jaarola, M. & Tegelstrom, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Marques, J. P. et al. Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci. Rep. https://doi.org/10.1038/Srep40788 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Melo-Ferreira, J., Boursot, P., Suchentrunk, F., Ferrand, N. & Alves, P. C. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol. Ecol. 14, 2459–2464. https://doi.org/10.1111/j.1365-294X.2005.02599.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Glover, K. A. et al. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet. 11, 2. https://doi.org/10.1186/1471-2156-11-2 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Kristensen, T. N., Hoffmann, A. A., Pertoldi, C. & Stronen, A. V. What can livestock breeders learn from conservation genetics and vice versa?. Front. Genet. https://doi.org/10.3389/Fgene.2015.00038 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Nishimura, T., Katsumura, T., Motoi, M., Oota, H. & Watanuki, S. Experimental evidence reveals the UCP1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans. Sci. Rep. 7, 5570. https://doi.org/10.1038/s41598-017-05766-3 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Glanville, E. J., Murray, S. A. & Seebacher, F. Thermal adaptation in endotherms: Climate and phylogeny interact to determine population-level responses in a wild rat. Funct. Ecol. 26, 390–398. https://doi.org/10.1111/j.1365-2435.2011.01933.x (2012).

    Article 

    Google Scholar 

  • 48.

    Leroy, G., Phocas, F., Hedan, B., Verrier, E. & Rognon, X. Inbreeding impact on litter size and survival in selected canine breeds. Vet. J. 203, 74–78. https://doi.org/10.1016/j.tvjl.2014.11.008 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Zhang, P. et al. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evol. Biol https://doi.org/10.1186/s12862-018-1148-7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Cortazar-Chinarro, M., Meyer-Lucht, Y., Laurila, A. & Hoglund, J. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 70, 477–484. https://doi.org/10.1007/s00251-017-1051-1 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. & Schook, L. B. Adaptive evolution of toll-like receptors (TLRs) in the Family Suidae. PLoS ONE 10, e0124069. https://doi.org/10.1371/journal.pone.0124069 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192. https://doi.org/10.1111/mec.12725 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Quesada-Lopez, T. et al. GPR120 controls neonatal brown adipose tissue thermogenic induction. Am. J. Physiol. Endocrinol. Metab. 317, E742–E750. https://doi.org/10.1152/ajpendo.00081.2019 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Luijten, I. H. N., Feldmann, H. M., von Essen, G., Cannon, B. & Nedergaard, J. In the absence of UCP1-mediated diet-induced thermogenesis, obesity is augmented even in the obesity-resistant 129S mouse strain. Am. J. Physiol. Endocrinol. Metab. 316, E729–E740. https://doi.org/10.1152/ajpendo.00020.2019 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Klein, J., Sato, A., Nagl, S. & OhUigin, C. Molecular trans-species polymorphism. Annu. Rev. Ecol. Syst. 29, 1. https://doi.org/10.1146/annurev.ecolsys.29.1.1 (1998).

    Article 

    Google Scholar 

  • 56.

    Gouy Bellocq, J., Suchentrunk, F., Baird, S. J. & Schaschl, H. Evolutionary history of an MHC gene in two leporid species: Characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 61, 131–144. https://doi.org/10.1007/s00251-008-0349-4 (2009).

    Article 

    Google Scholar 

  • 57.

    Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P. & Slowinski, J. B. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740. https://doi.org/10.1146/annurev.ecolsys.33.010802.150500 (2002).

    Article 

    Google Scholar 

  • 58.

    Lenz, T. L. Adaptive value of novel MHC immune gene variants. Proc. Natl. Acad. Sci. U.S.A. 115, 1414–1416. https://doi.org/10.1073/pnas.1722600115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Fijarczyk, A., Dudek, K., Niedzicka, M. & Babik, W. Balancing selection and introgression of newt immune-response genes. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.0819 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Grossen, C., Keller, L., Biebach, I., Croll, D. & Consortium, I. G. G. Introgression from domestic goat generated variation at the major histocompatibility complex of alpine Ibex. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004438 (2014).

    Article 

    Google Scholar 

  • 61.

    Nadachowska-Brzyska, K., Zielinski, P., Radwan, J. & Babik, W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 21, 887–906. https://doi.org/10.1111/j.1365-294X.2011.05347.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Wegner, K. M. & Eizaguirre, C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21, 779–781. https://doi.org/10.1111/j.1365-294X.2011.05401.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Thulin, C. G. The distribution of mountain hares Lepus timidus in Europe: A challenge from brown hares L-europaeus ?. Mammal. Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).

    Article 

    Google Scholar 

  • 64.

    Jansson, G. & Pehrson, A. The recent expansion of the brown hare (Lepus europaeus) in Sweden with possible implications to the mountain hare (L-timidus). Eur. J. Wildlife Res. 53, 125–130. https://doi.org/10.1007/s10344-007-0086-2 (2007).

    Article 

    Google Scholar 

  • 65.

    Smith, S. et al. Nonreceding hare lines: Genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus). Biol. J. Linn Soc. 120, 891–908 (2017).

    Article 

    Google Scholar 

  • 66.

    Levanen, R., Pohjoismaki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).

    Article 

    Google Scholar 

  • 67.

    Palo, J. U., Ulmanen, I., Lukka, M., Ellonen, P. & Sajantila, A. Genetic markers and population history: Finland revisited. Eur. J. Hum. Genet. EJHG 17, 1336–1346. https://doi.org/10.1038/ejhg.2009.53 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    RCoreTeam. R: A language and environment for statistical computing., Vol. https://www.R-project.org/. ( R Foundation for Statistical Computing, 2020).

  • 69.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Vol. https://ggplot2.tidyverse.org (Springer-Verlag, 2016).

  • 70.

    Biedrzycka, A., Sebastian, A., Migalska, M., Westerdahl, H. & Radwan, J. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol. Ecol. Resour. 17, 642–655. https://doi.org/10.1111/1755-0998.12612 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Sebastian, A., Migalska, M. & Biedrzycka, A. AmpliSAS and AmpliHLA: Web server tools for MHC typing of non-model species and human using NGS data. Methods Mol. Biol. 249–273, 2018. https://doi.org/10.1007/978-1-4939-8546-3_18 (1802).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Rambaut, A. FigTree. 1.4.3. Graphical viewer of phylogenetic trees. (http://tree.bio.ed.ac.uk/software/figtree/), <http://tree.bio.ed.ac.uk/software/figtree/> (2018).

  • 77.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resourc. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 

    Google Scholar 

  • 78.

    Smith, S. et al. Homozygosity at a class II MHC locus depresses female reproductive ability in European brown hares. Mol. Ecol. 19, 4131–4143. https://doi.org/10.1111/j.1365-294X.2010.04765.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630. https://doi.org/10.1111/mec.12886 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 80.

    Matthee, C. A., van Vuuren, B. J., Bell, D. & Robinson, T. J. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst. Biol. 53, 433–447. https://doi.org/10.1080/10635150490445715 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 81.

    Humphreys, A. M. & Barraclough, T. G. The evolutionary reality of higher taxa in mammals. Proc. Biol. Sci. 281, 20132750. https://doi.org/10.1098/rspb.2013.2750 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Ge, D. et al. Evolutionary history of lagomorphs in response to global environmental change. PLoS ONE 8, e59668. https://doi.org/10.1371/journal.pone.0059668 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Soria-Carrasco, V. & Castresana, J. Diversification rates and the latitudinal gradient of diversity in mammals. Proc. Biol. Sci. 279, 4148–4155. https://doi.org/10.1098/rspb.2012.1393 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cleaning up industrial filtration

    Using graphene foam to filter toxins from drinking water