Garcia-Garcia, M. J., Christien, L., García-Escalona, E. & González-García, C. Sensitivity of green spaces to the process of urban planning: Three case studies of Madrid (Spain). Cities 100, 102655. https://doi.org/10.1016/j.cities.2020.102655 (2020).
Google Scholar
Kondo, M. C., Fluehr, J. M., McKeon, T. & Branas, C. C. Urban green space and its impact on human health. Environ. Res. Public Health 15(3), 445. https://doi.org/10.3390/ijerph15030445 (2018).
Google Scholar
Nesbitt, L. et al. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 25, 103–111. https://doi.org/10.1016/j.ufug.2017.05.005 (2017).
Google Scholar
Hasan, S. S., Zhen, L., Miah, G., Ahamed, T. & Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 34, 100527. https://doi.org/10.1016/j.envdev.2020.100527 (2020).
Google Scholar
Kolodziejczyk, B. et al. Frontiers 2018/19: Emerging issues of environmental concern. United Nations Environment Programme, Nairobi, 24–37 (2019).
Steffen, W., Crutzen, P. J. & McNeill, J. R. The anthropocene: Are humans now overwhelming the great forces of nature. Hum. Environ. 36(8), 614–621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 (2007).
Google Scholar
CC & SC. Views on Accelerating the Ecological Civilization Construction (2015).
Ministry of Housing and Urban-Rural Development (MHURD). City Green Space Planning Standards, GB/T51346-2019 (2019).
Raei, E. et al. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 579, 124091. https://doi.org/10.1016/j.jhydrol.2019.124091 (2019).
Google Scholar
Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001 (2007).
Google Scholar
Xiao, F., Shu, J. & Zhang, L. Research on applying minimal cumulative resistance model in urban land ecological suitability assessment: As an example of Xiamen City. Acta Ecol. Sin. 30(2), 421–428 (2010).
Zhao, S., Ma, Y., Wang, J. & You, X. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 46, 126479. https://doi.org/10.1016/j.ufug.2019.126479 (2019).
Google Scholar
Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101. https://doi.org/10.1016/j.landusepol.2017.08.018 (2017).
Google Scholar
Central Committee & State Council (CC & SC). Views on establishment and monitoring of Territorial Space Planning system (2019).
Zhou, Q. et al. China’s Green space system planning: Development, experiences, and characteristics. Urban For. Urban Green. 60, 127017. https://doi.org/10.1016/j.ufug.2021.127017 (2021).
Google Scholar
Zhou, X., Zhang, S. & Zhu, D. Impact of urban water networks on microclimate and PM25 distribution in downtown areas: A case study of wuhan. Build. Environ. 203, 108073. https://doi.org/10.1016/j.buildenv.2021.108073 (2021).
Google Scholar
Ministry of Natural Resources (MNR). Guidelines for Formulation of Provincial Territorial Space Planning (Trial) (2020).
Rushdi, A. M. A. & Hassan, A. K. Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecol. Model. 304, 1–10. https://doi.org/10.1016/j.ecolmodel.2015.02.014 (2015).
Google Scholar
Wang, T., Li, H. & Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Ind. 130, 108101. https://doi.org/10.1016/j.ecolind.2021.108101 (2021).
Google Scholar
Wu, H. et al. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Ind. 129, 107955. https://doi.org/10.1016/j.ecolind.2021.107955 (2021).
Google Scholar
Janauer, G. A. Ecohydrology: Fusing concepts and scales. Ecol. Eng. 16(1), 9–16. https://doi.org/10.1016/S0925-8574(00)00072-0 (2000).
Google Scholar
Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).
Google Scholar
Fletcher, T. D. et al. SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage. Urban Water J. 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314 (2015).
Google Scholar
Nieuwenhuis, E., Cuppen, E., Langeveld, J. & Bruijn, H. Towards the integrated management of urban water systems: Conceptualizing integration and its uncertainties. J. Clean. Prod. 280(2), 124977. https://doi.org/10.1016/j.jclepro.2020.124977 (2021).
Google Scholar
Knaapen, J. P., Scheffer, M. & Harms, B. Estimating habitat isolation in landscape planning. Landscape Urban Plann. 23(1), 1–16. https://doi.org/10.1016/0169-2046(92)90060-D (1992).
Google Scholar
Yu, K. Security patterns and surface model in landscape ecological planning. Landscape Urban Plann. 36(1), 1–17. https://doi.org/10.1016/S0169-2046(96)00331-3 (1996).
Google Scholar
Yu, K. Landscape ecological security pattern of biological protection. Acta Ecologica Sinica 1, 3–5 (1999).
Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 38, 305–317. https://doi.org/10.1016/j.ufug.2018.10.014 (2019).
Google Scholar
Fu, Y., Shi, X., He, J., Yuan, Y. & Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Ind. 112, 106030. https://doi.org/10.1016/j.ecolind.2019.106030 (2020).
Google Scholar
Kong, F., Yin, H., Nakagoshi, N. & Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 95, 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001 (2010).
Google Scholar
Kong, F. & Yin, H. Construction of Jinan urban green space ecological network. Acta Ecol. Sin. 4, 1711–1719 (2008).
Linehan, J., Gross, M. & Finn, J. Greenway planning: Developing a landscape ecological network approach. Landsc. Urban Plan. 33(1–3), 179–193. https://doi.org/10.1016/0169-2046(94)02017-A (1995).
Google Scholar
Yang, H., Chen, W. & Chen, X. Regional ecological network planning for biodiversity conservation: A case study of China’s Poyang lake eco-economic region. Pol. J. Environ. Stud. 26(4), 1825–1833. https://doi.org/10.15244/pjoes/68877 (2017).
Google Scholar
Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).
Google Scholar
Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24(3), 660–668. https://doi.org/10.1111/j.1523-1739.2010.01450.x (2010).
Google Scholar
Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24(1), 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).
Google Scholar
Saura, S., Vogt, P., Velázquez, J., Hernando, A. & Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 262(2), 150–160. https://doi.org/10.1016/j.foreco.2011.03.017 (2011).
Google Scholar
Bueno, J. A., Tsihrintzis, V. A. & Alvarez, L. South Florida greenways: a conceptual framework for the ecological reconnectivity of the region. Landsc. Urban Plan. 33(1–3), 247–266. https://doi.org/10.1016/0169-2046(94)02021-7 (1995).
Google Scholar
Cook, E. A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58(2–4), 269–280. https://doi.org/10.1016/S0169-2046(01)00226-2 (2002).
Google Scholar
Dalton, R., Garlick, J., Minshull, R. & Robinson, A. Networks in Geography (Phillip, 1973).
Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, 1986).
Haggett, P. & Chorley, R. J. Network Analysis in Geography (Edward Arnold, 1972).
Yu, K. The identification method of landscape ecological strategic points and the surface model of theoretical geography. J. Geog. Sci. S1, 3–5 (1998).
Yu, Q. et al. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou County (Inner Mongolia). Ecol. Indic. 84, 304–318. https://doi.org/10.1016/j.ecolind.2017.09.002 (2018).
Google Scholar
Zhang, Y. & Yu, B. Evaluation of urban ecological network space and its structure optimization. Acta Ecol. Sin. 36(21), 6969–6984 (2016).
Hong, W. et al. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 62, 316–325. https://doi.org/10.1016/j.landusepol.2017.01.010 (2017).
Google Scholar
Monaco, R., Negrini, G., Salizzoni, E., Soares, A. J. & Voghera, A. Inside-outside park planning: A mathematical approach to assess and support the design of ecological connectivity between Protected Areas and the surrounding landscape. Ecol. Eng. 149, 105748. https://doi.org/10.1016/j.ecoleng.2020.105748 (2020).
Google Scholar
Morandi, D. T. et al. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Ind. 115, 106440. https://doi.org/10.1016/j.ecolind.2020.106440 (2020).
Google Scholar
Santos, J. S. et al. Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Ind. 88, 414–424. https://doi.org/10.1016/j.ecolind.2018.01.011 (2018).
Google Scholar
Dai, L., Liu, Y., Luo, X. I. & the MCR and, ,. DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141868 (2020).
Google Scholar
Ferreira, C. S. S. et al. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. J. Hydrol. 525, 249–263. https://doi.org/10.1016/j.jhydrol.2015.03.039 (2015).
Google Scholar
Kalantari, Z. et al. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Sci. Total Environ. 661, 393–406. https://doi.org/10.1016/j.scitotenv.2019.01.009 (2019).
Google Scholar
Kalantari, Z., Ferreira, C. S. S., Walsh, R. P. D., Ferreira, A. J. D. & Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban Mediterranean catchment. Land Degrad. Dev. 28, 2207–2221. https://doi.org/10.1002/ldr.2747 (2017).
Google Scholar
Grillakis, M. G. et al. Initial soil moisture effects on flash flood generation: A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 541(A), 206–217. https://doi.org/10.1016/j.jhydrol.2016.03.007 (2016).
Google Scholar
Zhang, K., Fong, T. & Chui, M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 621, 915–929. https://doi.org/10.1016/j.scitotenv.2017.11.281 (2018).
Google Scholar
Liu, Z., Lin, Y., De Meulder, B. & Wang, S. Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use. Urban For. Urban Green. 126, 785. https://doi.org/10.1016/j.ufug.2020.126785 (2020).
Google Scholar
Wakefield, S. Great expectations: Waterfront redevelopment and the Hamilton Harbour Waterfront Trail. Cities 24(4), 298–310. https://doi.org/10.1016/j.cities.2006.11.001 (2007).
Google Scholar
Rimaze, D., Machumu, A., Mremi, R. & Eustace, A. Diversity and abundance of wild mammals between different accommodation facilities in the Kwakuchinja Wildlife Corridor, Tanzania. Sci. Afr. 9, e00480. https://doi.org/10.1016/j.sciaf.2020.e00480 (2020).
Google Scholar
Franco, D., Mannino, I. & Zanetto, G. The impact of agroforestry networks on scenic beauty estimation: The role of a landscape ecological network on a socio-cultural process. Landsc. Urban Plan. 62(3), 119–138. https://doi.org/10.1016/S0169-2046(02)00127-5 (2003).
Google Scholar
Wu, X. et al. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 61, 102354. https://doi.org/10.1016/j.scs.2020.102354 (2020).
Google Scholar
Yang, C., Zeng, W. & Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 61, 102271. https://doi.org/10.1016/j.scs.2020.102271 (2020).
Google Scholar
Yang, J., Zeng, C. & Cheng, Y. Spatial influence of ecological networks on land use intensity. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137151 (2020).
Google Scholar
Théau, J., Bernier, A. & Fournier, R. A. An evaluation framework based on sustainability-related indicators for the comparison of conceptual approaches for ecological networks. Ecol. Indic. 52, 444–457. https://doi.org/10.1016/j.ecolind.2014.12.029 (2015).
Google Scholar
Neri, M., Jameli, D., Bernard, E. & Melo, F. P. L. Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspect. Ecol. Conserv. 17(3), 131–135. https://doi.org/10.1016/j.pecon.2019.08.004 (2019).
Google Scholar
Zeng, Y. & Zhong, L. Identifying conflicts tendency between nature-based tourism development and ecological protection in China. Ecol. Indic. 109, 105791. https://doi.org/10.1016/j.ecolind.2019.105791 (2020).
Google Scholar
Cunha, N. S. & Magalhães, M. R. Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecol. Ind. 104, 802–818. https://doi.org/10.1016/j.ecolind.2019.04.050 (2019).
Google Scholar
Dong, J., Peng, J., Liu, Y., Qiu, S. & Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 199, 103815. https://doi.org/10.1016/j.landurbplan.2020.103815 (2020).
Google Scholar
Gasanov, G. et al. Data on the productivity of plant cover of the main types of soils of the North-Western precaspian in connection with the dynamics of ecological factors. Data Brief 24, 103713. https://doi.org/10.1016/j.dib.2019.103713 (2019).
Google Scholar
Montis, A. D. et al. Resilient ecological networks: A comparative approach. Land Use Policy 89, 104207. https://doi.org/10.1016/j.landusepol.2019.104207 (2019).
Google Scholar
Du, H. et al. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 106, 105501. https://doi.org/10.1016/j.ecolind.2019.105501 (2020).
Google Scholar
Guo, X. et al. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod. 254, 120075. https://doi.org/10.1016/j.jclepro.2020.120075 (2020).
Google Scholar
Li, J., Wang, Y., Ni, Z., Chen, S. & Xia, B. An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms. J. Clean. Prod. 271, 122555. https://doi.org/10.1016/j.jclepro.2020.122555 (2020).
Google Scholar
Afriyanie, D. et al. Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities 101, 102710. https://doi.org/10.1016/j.cities.2020.102710 (2020).
Google Scholar
Ioan-Cristian, I. et al. Integrating urban blue and green areas based on historical evidence. Urban For. Urban Green. 34, 217–225. https://doi.org/10.1016/j.ufug.2018.07.001 (2019).
Google Scholar
Jaung, W. L., Carrasco, R., Ahmad, S., Tan, P. Y. & Richards, D. R. Temperature and air pollution reductions by urban green spaces are highly valued in a tropical city-state. Urban For. Urban Green. https://doi.org/10.1016/j.ufug.2020.126827 (2020).
Google Scholar
La Sorte, F. A., Aronson, M. F. J., Lepczyk, C. A. & Horton, K. G. Area is the primary correlate of annual and seasonal patterns of avian species richness in urban green spaces. Landsc. Urban Plan. 203, 103892. https://doi.org/10.1016/j.landurbplan.2020.103892 (2020).
Google Scholar
Moradpour, M. & Hosseini, V. An investigation into the effects of green space on air quality of an urban area using CFD modeling. Urban Clim. 34, 100686. https://doi.org/10.1016/j.uclim.2020.100686 (2020).
Google Scholar
Nouri, H., Borujeni, S. C. & Hoekstra, A. Y. The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landsc. Urban Plan. 190, 103613. https://doi.org/10.1016/j.landurbplan.2019.103613 (2019).
Google Scholar
Sikuzani, Y. U. et al. Tree diversity and structure on green space of urban and peri-urban zones: The case of Lubumbashi City in the Democratic Republic of Congo. Urban For. Urban Green. 41, 67–74. https://doi.org/10.1016/j.ufug.2019.03.008 (2019).
Google Scholar
Source: Ecology - nature.com